{"title":"A Hybrid Method Combining Mimetic Finite Difference and Discontinuous Galerkin for Two-Phase Reservoir Flow Problems","authors":"Xiang Rao, Xupeng He, Hyung Kwak, Hussein Hoteit","doi":"10.1002/fld.5367","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We introduce a new hybrid numerical approach that integrates the Mimetic Finite Difference (MFD) and Discontinuous Galerkin (DG) methods, termed the MFD-DG method. This technique leverages the MFD method to adeptly manage arbitrary quadrilateral meshes and full permeability tensors, addressing the flow equation for both edge-center and cell-center pressures. It also provides an approximation for phase fluxes across interfaces and within cells. Subsequently, the DG scheme, equipped with a slope limiter, is applied to the convection-dominated transport equation to compute nodal and cell-average water saturations. We present two numerical examples that demonstrate the MFD's capability to deliver high-precision approximations of pressure and flux distributions across a broad spectrum of grid types. Furthermore, our proposed hybrid MFD-DG method demonstrates a significantly enhanced ability to capture sharp water flooding fronts with greater accuracy compared to the traditional Finite Difference (FD) Method. To further demonstrate the efficacy of our approach, four numerical examples are provided to illustrate the MFD-DG method's superiority over the classical Finite Volume (FV) method and MFDM, particularly in scenarios characterized by anisotropic permeability tensors and intricate geometries.</p>\n </div>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"97 4","pages":"484-502"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Fluids","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fld.5367","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce a new hybrid numerical approach that integrates the Mimetic Finite Difference (MFD) and Discontinuous Galerkin (DG) methods, termed the MFD-DG method. This technique leverages the MFD method to adeptly manage arbitrary quadrilateral meshes and full permeability tensors, addressing the flow equation for both edge-center and cell-center pressures. It also provides an approximation for phase fluxes across interfaces and within cells. Subsequently, the DG scheme, equipped with a slope limiter, is applied to the convection-dominated transport equation to compute nodal and cell-average water saturations. We present two numerical examples that demonstrate the MFD's capability to deliver high-precision approximations of pressure and flux distributions across a broad spectrum of grid types. Furthermore, our proposed hybrid MFD-DG method demonstrates a significantly enhanced ability to capture sharp water flooding fronts with greater accuracy compared to the traditional Finite Difference (FD) Method. To further demonstrate the efficacy of our approach, four numerical examples are provided to illustrate the MFD-DG method's superiority over the classical Finite Volume (FV) method and MFDM, particularly in scenarios characterized by anisotropic permeability tensors and intricate geometries.
期刊介绍:
The International Journal for Numerical Methods in Fluids publishes refereed papers describing significant developments in computational methods that are applicable to scientific and engineering problems in fluid mechanics, fluid dynamics, micro and bio fluidics, and fluid-structure interaction. Numerical methods for solving ancillary equations, such as transport and advection and diffusion, are also relevant. The Editors encourage contributions in the areas of multi-physics, multi-disciplinary and multi-scale problems involving fluid subsystems, verification and validation, uncertainty quantification, and model reduction.
Numerical examples that illustrate the described methods or their accuracy are in general expected. Discussions of papers already in print are also considered. However, papers dealing strictly with applications of existing methods or dealing with areas of research that are not deemed to be cutting edge by the Editors will not be considered for review.
The journal publishes full-length papers, which should normally be less than 25 journal pages in length. Two-part papers are discouraged unless considered necessary by the Editors.