{"title":"Conservative solution transfer between anisotropic meshes for time-accurate hybridized discontinuous Galerkin methods","authors":"Tomáš Levý, Georg May","doi":"10.1002/fld.5278","DOIUrl":"10.1002/fld.5278","url":null,"abstract":"<p>We present a hybridized discontinuous Galerkin (HDG) solver for general time-dependent balance laws. In particular, we focus on a coupling of the solution process for unsteady problems with our anisotropic mesh refinement framework. The goal is to properly resolve all relevant unsteady features with the smallest possible number of mesh elements, and hence to reduce the computational cost of numerical simulations while maintaining its accuracy. A crucial step is then to transfer the numerical solution between two meshes, as the anisotropic mesh adaptation is producing highly skewed, non-nested sequences of triangular grids. For this purpose, we adopt the Galerkin projection for the HDG solution transfer as it preserves the conservation of physically relevant quantities and does not compromise the accuracy of high-order method. We present numerical experiments verifying these properties of the anisotropically adaptive HDG method.</p>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"96 6","pages":"1011-1030"},"PeriodicalIF":1.8,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fld.5278","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140007751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christian Leithäuser, Victor Norrefeldt, Elisa Thiel, Michael Buschhaus, Jörg Kuhnert, Pratik Suchde
{"title":"Predicting aerosol transmission in airplanes: Benefits of a joint approach using experiments and simulation","authors":"Christian Leithäuser, Victor Norrefeldt, Elisa Thiel, Michael Buschhaus, Jörg Kuhnert, Pratik Suchde","doi":"10.1002/fld.5277","DOIUrl":"10.1002/fld.5277","url":null,"abstract":"<p>We investigate the transmission of aerosol particles in an airplane cabin with a joint approach using experiments and simulation. Experiments were conducted in a realistic aircraft cabin with heated dummies acting as passengers. A Sheffield head with an aerosol generator was used to emulate an infected passenger and particle numbers were measured at different locations throughout the cabin to quantify the exposure of other passengers. The same setting was simulated with a computational fluid dynamics model consisting of a Lagrange continuous phase for capturing the air flow, coupled with a Lagrange suspended discrete phase to represent the aerosols. Virtual measurements were derived from the simulation and compared with the experiments. Our main results are: the experimental setup provides good measurements well suited for model validation, the simulation does correctly reproduce the fundamental mechanisms of aerosol dispersion and simulations can help to improve the understanding of aerosol transmission for example by visualizing particle distributions. Furthermore, with findings from the simulation it was possible to crucially improve the experimental setup, proving that feedback between the numerical and the hardware world is indeed beneficial.</p>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"96 6","pages":"991-1010"},"PeriodicalIF":1.8,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fld.5277","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139981645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hybrid large eddy simulation and Lagrangian simulation of a compressible turbulent planar jet with a chemical reaction","authors":"Jiabao Xing, Tomoaki Watanabe, Koji Nagata","doi":"10.1002/fld.5273","DOIUrl":"10.1002/fld.5273","url":null,"abstract":"<p>Large eddy simulation (LES) coupled with Lagrangian particle simulation (LPS) is applied to investigate high-speed turbulent reacting flows. Here, LES solves a velocity field while LPS solves scalar transport equations with notional particles. Although LPS does not require sub-grid scale models for chemical source terms, molecular diffusion has to be modeled by a so-called mixing model, for which a mixing volume model (MVM), that is originally proposed for an inert scalar in incompressible flow, is extended to reactive scalars in compressible flows. The extended model is based on a relaxation process toward the average of nearby notional particles and assumes a common mixing timescale for all species. LES/LPS with the MVM is applied to a temporally-evolving compressible turbulent planar jet with an isothermal reaction and is tested by comparing the results with direct numerical simulation (DNS). The results show that LES/LPS well predicts the statistics of mass fractions. As the jet Mach number increases, the reaction progress delays due to the delayed jet development. This Mach number dependence is also well reproduced in LES/LPS. The mean molecular diffusion term of the product calculated as a function of its mass fraction also agrees well between LES/LPS and DNS. An important parameter for the MVM is the distance among particles, for which the requirement for accurate prediction is presented for the present test case. LES/LPS with the MVM is expected to be a promising method for investigating compressible turbulent reactive flows at a moderate computational cost.</p>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"96 6","pages":"962-990"},"PeriodicalIF":1.8,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139969631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A third-order entropy condition scheme for hyperbolic conservation laws","authors":"Haitao Dong, Tong Zhou, Fujun Liu","doi":"10.1002/fld.5268","DOIUrl":"10.1002/fld.5268","url":null,"abstract":"<p>Following the solution formula method given in Dong et al. (High order discontinuities decomposition entropy condition schemes for Euler equations. <i>CFD J</i>. 2002;10(4): 448–457), this article studies a type of one-step fully-discrete scheme, and constructs a third-order scheme which is written into a compact form via a new limiter. The highlights of this study and advantages of new third-order scheme are as follows: ① We proposed a very simple new methodology of constructing one-step, consistent high-order and non-oscillation schemes that do not rely on Runge–Kutta method; ② We systematically studied new scheme's theoretical problems about entropy conditions, error analysis, and non-oscillation conditions; ③ The new scheme achieves exact solution in linear cases and performing better in nonlinear cases when CFL → 1; ④ The new scheme is third order but high resolution with excellent shock-capturing capacity which is comparable to fifth order WENO scheme; ⑤ CPU time of new scheme is only a quarter of WENO5 + RK3 under same computing condition; ⑥ For engineering applications, the new scheme is extended to multi-dimensional Euler equations under curvilinear coordinates. Numerical experiments contain 1D scalar equation, 1D,2D,3D Euler equations. Accuracy tests are carried out using 1D linear scalar equation, 1D Burgers equation and 2D Euler equations and two sonic point tests are carried out to show the effect of entropy condition linearization. All tests are compared with results of WENO5 and finally indicate EC3 is cheaper in computational expense.</p>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"96 6","pages":"930-961"},"PeriodicalIF":1.8,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139956327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A parallel grad-div stabilized finite element algorithm for the Navier–Stokes equations with a nonlinear damping term","authors":"Ye Jiang, Bo Zheng, Yueqiang Shang","doi":"10.1002/fld.5267","DOIUrl":"10.1002/fld.5267","url":null,"abstract":"<p>In this work, we propose a parallel grad-div stabilized finite element algorithm for the Navier–Stokes equations attached with a nonlinear damping term, using a fully overlapping domain decomposition approach. In the proposed algorithm, we calculate a local solution in a defined subdomain on a global composite mesh which is fine around the defined subdomain and coarse in other regions. The algorithm is simple to carry out on the basis of available sequential solvers. By a local a priori estimate of the finite element solution, we deduce error bounds of the approximations from our presented algorithm. We perform also some numerical experiments to verify the effectiveness of the proposed algorithm.</p>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"96 6","pages":"902-929"},"PeriodicalIF":1.8,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139951460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Employment of an efficient particle tracking algorithm based on barycentric coordinates in hybrid finite-volume/probability-density-function Monte Carlo methods","authors":"Mohamad Bagher Barezban, Masoud Darbandi","doi":"10.1002/fld.5263","DOIUrl":"10.1002/fld.5263","url":null,"abstract":"<p>One main concern of this work is to develop an efficient particle-tracking-managing algorithm in the framework of a hybrid pressure-based finite-volume/probability-density-function (FV/PDF) Monte-Carlo (MC) solution algorithm to extend the application of FV/PDF MC methods to absolutely incompressible flows and speedup the convergence rate of solving the fluctuating velocity-turbulent frequency joint PDF equation in turbulent flow simulations. Contrary to the density-based algorithms, the pressure-based algorithms have stable convergence rates even in zero-Mach number flows. As another contribution, literature shows that the past developed methods mostly used mesh searching techniques to attribute particles to cells at the beginning of each tracking time-step. Also, they had to calculate the linear basis functions at every time-step to estimate the particle mean fields and interpolate the data. These calculations would be computationally very expensive, time-consuming, and inefficient in computational domains with arbitrary-shaped 3D meshes. As known, the barycentric tracking is a continuous particle tracking method, which provides more efficiency in case of handling 3D domains with general mesh shapes. The barycentric tracking eliminates any mesh searching technique and readily provides the convenient linear basis functions. So, this work benefits from these advantages and tracks the particles based on their barycentric coordinates. It leads to less computational work and a better efficiency for the present method. A bluff-body turbulent flow case is examined to validate the present FV/PDF MC method. From the accuracy perspective, it is shown that the results of the present algorithm are in great agreement with experimental data and available numerical solutions. The present study shows that the number of particle time-steps required to reach the statistically steady-state condition is at least one-sixth less than the previously developed algorithms. This also approves a faster convergence rate for the present hybrid pressure-based algorithm.</p>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"96 6","pages":"884-901"},"PeriodicalIF":1.8,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139839461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ehsan Jafari Nodoushan, Mohanna Tajnesaie, Ahmad Shakibaeinia
{"title":"Two- and three-dimensional multiphase mesh-free particle modeling of transitional landslide with μ(I) rheology","authors":"Ehsan Jafari Nodoushan, Mohanna Tajnesaie, Ahmad Shakibaeinia","doi":"10.1002/fld.5274","DOIUrl":"10.1002/fld.5274","url":null,"abstract":"<p>Landslides, which are the sources of most catastrophic natural disasters, can be subaerial (dry), submerged (underwater), or semi-submerged (transitional). Semi-submerged or transitional landslides occur when a subaerial landslide enters water and turns to submerged condition. Predicting the behavior of such a highly dynamic multi-phase granular flow system is challenging, mainly due to the water entry effects, such as wave impact and partial saturation (and resulted cohesion). The mesh-free particle methods, such as the moving particle semi-implicit (MPS) method, have proven their capabilities for the simulation of the highly dynamic multiphase systems. This study develops and evaluates a numerical model, based on the MPS particle method in combination with the <i>μ</i>(<i>I</i>) rheological model, to simulate the morphodynamic of the granular mass in semi-submerged landslides in two and three dimensions. An algorithm is developed to consider partial saturation (and resulting cohesion) during the water entry. Comparing the numerical results with the experimental measurements shows the ability of the proposed model to accurately reproduce the morphological evolution of the granular mass, especially at the moment of water entry.</p>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"96 5","pages":"823-850"},"PeriodicalIF":1.8,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139783150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A novel stabilized nodal integration formulation using particle finite element method for incompressible flow analysis","authors":"Lu-Jia Yu, Yin-Fu Jin, Zhen-Yu Yin, Jian-Fei Chen","doi":"10.1002/fld.5271","DOIUrl":"10.1002/fld.5271","url":null,"abstract":"<p>In simulations using the particle finite element method (PFEM) with node-based strain smoothing technique (NS-PFEM) to simulate the incompressible flow, spatial and temporal instabilities have been identified as crucial problems. Accordingly, this study presents a stabilized NS-PFEM-FIC formulation to simulate an incompressible fluid with free-surface flow. In the proposed approach, (1) stabilization is achieved by implementing the gradient strain field in place of the constant strain field over the smoothing domains, handling spatial and temporal instabilities in direct nodal integration; (2) the finite increment calculus (FIC) stabilization terms are added using nodal integration, and a three-step fractional step method is adopted to update pressures and velocities; and (3) a novel slip boundary with the predictor–corrector algorithm is developed to deal with the interaction between the free-surface flow with rigid walls, avoiding the pressure concentration induced by standard no-slip condition. The proposed stabilized NS-PFEM-FIC is validated via several classical numerical cases (hydrostatic test, water jet impinging, water dam break, and water dam break on a rigid obstacle). Comparisons of all simulations to the experimental results and other numerical solutions reveal good agreement, demonstrating the strong ability of the proposed stabilized NS-PFEM-FIC to solve incompressible free-surface flow with high accuracy and promising application prospects.</p>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"96 6","pages":"853-883"},"PeriodicalIF":1.8,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139842814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comment on the paper “an explicit-implicit numerical scheme for time fractional boundary layer flows, International Journal for Numerical Methods in Fluids, 2022, 94:920–940”","authors":"Asterios Pantokratoras","doi":"10.1002/fld.5270","DOIUrl":"10.1002/fld.5270","url":null,"abstract":"","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"96 6","pages":"851-852"},"PeriodicalIF":1.8,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139785203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Moving least-squares aided finite element method: A powerful means to predict flow fields in the presence of a solid part","authors":"Mehdi Mostafaiyan, Sven Wießner, Gert Heinrich","doi":"10.1002/fld.5261","DOIUrl":"10.1002/fld.5261","url":null,"abstract":"<p>With the assistance of the moving least-squares (MLS) interpolation functions, a two-dimensional finite element code is developed to consider the effects of a stationary or moving solid body in a flow domain. At the same time, the mesh or grid is independent of the shape of the solid body. We achieve this goal in two steps. In the first step, we use MLS interpolants to enhance the pressure (P) and velocity (V) shape functions. By this means, we capture different discontinuities in a flow domain. In our previous publications, we have named this technique the PVMLS method (pressure and velocity shape functions enhanced by the MLS interpolants) and described it thoroughly. In the second step, we modify the PVMLS method (the M-PVMLS method) to consider the effect of a solid part(s) in a flow domain. To evaluate the new method's performance, we compare the results of the M-PVMLS method with a finite element code that uses boundary-fitted meshes.</p>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"96 5","pages":"806-822"},"PeriodicalIF":1.8,"publicationDate":"2024-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fld.5261","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139845306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}