{"title":"Enhanced conservative phase field method for moving contact line problems","authors":"Mingguang Shen, Ben Q. Li","doi":"10.1002/fld.5286","DOIUrl":null,"url":null,"abstract":"<p>The traditional Allen–Cahn phase field model doesn't conserve mass and is mostly used in solidification microstructure formation. However, a recently modified Allen–Cahn phase field model has riveted the attention of the academic community. It was obtained by subtracting the curvature-driven flow term from the advective Allen–Cahn phase field model, and thus improves the boundedness of the phase field. More recently, the model has been further refined with the recovered signed distance function to compute interface normal vectors. This paper develops a three dimensional phase field model, based on the abovementioned Allen–Cahn phase field model. The model was discretized using a finite difference method on a half-staggered grid. More important, interfacial tension was expressed in a potential form. The model was tested against a number of cases and was applied to impacts in various conditions. Besides, the model was parallelized using the shared memory parallelism, OpenMP, to facilitate computation.</p>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"96 7","pages":"1215-1229"},"PeriodicalIF":1.7000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Fluids","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fld.5286","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The traditional Allen–Cahn phase field model doesn't conserve mass and is mostly used in solidification microstructure formation. However, a recently modified Allen–Cahn phase field model has riveted the attention of the academic community. It was obtained by subtracting the curvature-driven flow term from the advective Allen–Cahn phase field model, and thus improves the boundedness of the phase field. More recently, the model has been further refined with the recovered signed distance function to compute interface normal vectors. This paper develops a three dimensional phase field model, based on the abovementioned Allen–Cahn phase field model. The model was discretized using a finite difference method on a half-staggered grid. More important, interfacial tension was expressed in a potential form. The model was tested against a number of cases and was applied to impacts in various conditions. Besides, the model was parallelized using the shared memory parallelism, OpenMP, to facilitate computation.
期刊介绍:
The International Journal for Numerical Methods in Fluids publishes refereed papers describing significant developments in computational methods that are applicable to scientific and engineering problems in fluid mechanics, fluid dynamics, micro and bio fluidics, and fluid-structure interaction. Numerical methods for solving ancillary equations, such as transport and advection and diffusion, are also relevant. The Editors encourage contributions in the areas of multi-physics, multi-disciplinary and multi-scale problems involving fluid subsystems, verification and validation, uncertainty quantification, and model reduction.
Numerical examples that illustrate the described methods or their accuracy are in general expected. Discussions of papers already in print are also considered. However, papers dealing strictly with applications of existing methods or dealing with areas of research that are not deemed to be cutting edge by the Editors will not be considered for review.
The journal publishes full-length papers, which should normally be less than 25 journal pages in length. Two-part papers are discouraged unless considered necessary by the Editors.