Silvia Di Francesco, Sara Venturi, Jessica Padrone, Antonio Agresta
{"title":"开发双层浅水流动的级联晶格玻尔兹曼模型","authors":"Silvia Di Francesco, Sara Venturi, Jessica Padrone, Antonio Agresta","doi":"10.1002/fld.5288","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Many environmental phenomena, such as flows in rivers or in coastal region can be characterised by means of the ‘shallow approach’. A multi-layer scheme allows to extend it to density layered shallow water flows (e.g., gravity currents). Although a variety of models allowing numerical investigation of single and multi-layer shallow water flows, based on continuum and particle approaches, have been widely discussed, there are still some computational aspects that need further investigation. Focusing on the Lattice Boltzmann models (LBM), available multi-layer models generally use the standard linear collision operator (CO). In this work we adopt a multi relaxation time (MRT) cascaded collision operator to develop a two-layered liquid Lattice-Boltzmann model (CaLB-2). Specifically, the model solves the shallow water equations, taking into account two separate sets of particle distribution function (PDF), one for each layer, solved separately. Layers are connected through coupling terms, defined as external forces that model the mutual actions between the two layers. The model is validated through comparisons with experimental and numerical results from test cases available in literature. First results are very promising, highlighting a good correspondence between simulation results and literature benchmarks.</p>\n </div>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"96 7","pages":"1230-1249"},"PeriodicalIF":1.7000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a cascaded lattice Boltzmann model for two-layer shallow water flows\",\"authors\":\"Silvia Di Francesco, Sara Venturi, Jessica Padrone, Antonio Agresta\",\"doi\":\"10.1002/fld.5288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Many environmental phenomena, such as flows in rivers or in coastal region can be characterised by means of the ‘shallow approach’. A multi-layer scheme allows to extend it to density layered shallow water flows (e.g., gravity currents). Although a variety of models allowing numerical investigation of single and multi-layer shallow water flows, based on continuum and particle approaches, have been widely discussed, there are still some computational aspects that need further investigation. Focusing on the Lattice Boltzmann models (LBM), available multi-layer models generally use the standard linear collision operator (CO). In this work we adopt a multi relaxation time (MRT) cascaded collision operator to develop a two-layered liquid Lattice-Boltzmann model (CaLB-2). Specifically, the model solves the shallow water equations, taking into account two separate sets of particle distribution function (PDF), one for each layer, solved separately. Layers are connected through coupling terms, defined as external forces that model the mutual actions between the two layers. The model is validated through comparisons with experimental and numerical results from test cases available in literature. First results are very promising, highlighting a good correspondence between simulation results and literature benchmarks.</p>\\n </div>\",\"PeriodicalId\":50348,\"journal\":{\"name\":\"International Journal for Numerical Methods in Fluids\",\"volume\":\"96 7\",\"pages\":\"1230-1249\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/fld.5288\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Fluids","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fld.5288","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Development of a cascaded lattice Boltzmann model for two-layer shallow water flows
Many environmental phenomena, such as flows in rivers or in coastal region can be characterised by means of the ‘shallow approach’. A multi-layer scheme allows to extend it to density layered shallow water flows (e.g., gravity currents). Although a variety of models allowing numerical investigation of single and multi-layer shallow water flows, based on continuum and particle approaches, have been widely discussed, there are still some computational aspects that need further investigation. Focusing on the Lattice Boltzmann models (LBM), available multi-layer models generally use the standard linear collision operator (CO). In this work we adopt a multi relaxation time (MRT) cascaded collision operator to develop a two-layered liquid Lattice-Boltzmann model (CaLB-2). Specifically, the model solves the shallow water equations, taking into account two separate sets of particle distribution function (PDF), one for each layer, solved separately. Layers are connected through coupling terms, defined as external forces that model the mutual actions between the two layers. The model is validated through comparisons with experimental and numerical results from test cases available in literature. First results are very promising, highlighting a good correspondence between simulation results and literature benchmarks.
期刊介绍:
The International Journal for Numerical Methods in Fluids publishes refereed papers describing significant developments in computational methods that are applicable to scientific and engineering problems in fluid mechanics, fluid dynamics, micro and bio fluidics, and fluid-structure interaction. Numerical methods for solving ancillary equations, such as transport and advection and diffusion, are also relevant. The Editors encourage contributions in the areas of multi-physics, multi-disciplinary and multi-scale problems involving fluid subsystems, verification and validation, uncertainty quantification, and model reduction.
Numerical examples that illustrate the described methods or their accuracy are in general expected. Discussions of papers already in print are also considered. However, papers dealing strictly with applications of existing methods or dealing with areas of research that are not deemed to be cutting edge by the Editors will not be considered for review.
The journal publishes full-length papers, which should normally be less than 25 journal pages in length. Two-part papers are discouraged unless considered necessary by the Editors.