A Relaxation Scheme for the Simulation of Two-Phase Flows With Inaccessible Pore Volume in Polymer Flooding

IF 1.7 4区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
C. Berthon, B. Braconnier, G. L. Dongmo Nguepi, C. Preux, Q. H. Tran
{"title":"A Relaxation Scheme for the Simulation of Two-Phase Flows With Inaccessible Pore Volume in Polymer Flooding","authors":"C. Berthon,&nbsp;B. Braconnier,&nbsp;G. L. Dongmo Nguepi,&nbsp;C. Preux,&nbsp;Q. H. Tran","doi":"10.1002/fld.5345","DOIUrl":null,"url":null,"abstract":"<p>The simulation of polymer injection in a reservoir is of paramount importance in enhanced oil recovery. Despite decades of research, the computation of polymer flows in porous media remains a challenging task. The main difficulty lies in the necessity to take into account the effect of <i>inaccessible pore volumes</i> (IPV), for which standard closure laws give rise to a weakly hyperbolic or even non-hyperbolic system. In the latter case, exponential instabilities may appear at the continuous level, which must be addressed at the discrete level so as to prevent a premature stop of the numerical simulations. The notion of IPV was introduced by engineers in order to account for the following observation: when a polymer solution is injected into an initial core saturated with water, the breakthrough of the polymer at the exit occurs before that of the water in which it is injected. It seems that due to their large size, the polymer molecules cannot insinuate themselves into all pores as well as water. Having less volume to flood, the polymer molecules see their speed increased, hence the ad hoc acceleration factor associated with the polymer. In this work, we propose a relaxation method that guarantees some practical robustness for all IPV laws. This is achieved by replacing the original system by a relaxation model which is always hyperbolic. The designed relaxation model involves two parameters which enable us not only to adjust the correct amount of numerical dissipation, but also to ensure positivity for some critical quantities such as water saturation and polymer concentration. Extensive numerical tests are performed in order to compare the relaxation scheme to the more classical upwind scheme for several IPV laws.</p>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"97 3","pages":"244-266"},"PeriodicalIF":1.7000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fld.5345","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Fluids","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fld.5345","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The simulation of polymer injection in a reservoir is of paramount importance in enhanced oil recovery. Despite decades of research, the computation of polymer flows in porous media remains a challenging task. The main difficulty lies in the necessity to take into account the effect of inaccessible pore volumes (IPV), for which standard closure laws give rise to a weakly hyperbolic or even non-hyperbolic system. In the latter case, exponential instabilities may appear at the continuous level, which must be addressed at the discrete level so as to prevent a premature stop of the numerical simulations. The notion of IPV was introduced by engineers in order to account for the following observation: when a polymer solution is injected into an initial core saturated with water, the breakthrough of the polymer at the exit occurs before that of the water in which it is injected. It seems that due to their large size, the polymer molecules cannot insinuate themselves into all pores as well as water. Having less volume to flood, the polymer molecules see their speed increased, hence the ad hoc acceleration factor associated with the polymer. In this work, we propose a relaxation method that guarantees some practical robustness for all IPV laws. This is achieved by replacing the original system by a relaxation model which is always hyperbolic. The designed relaxation model involves two parameters which enable us not only to adjust the correct amount of numerical dissipation, but also to ensure positivity for some critical quantities such as water saturation and polymer concentration. Extensive numerical tests are performed in order to compare the relaxation scheme to the more classical upwind scheme for several IPV laws.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal for Numerical Methods in Fluids
International Journal for Numerical Methods in Fluids 物理-计算机:跨学科应用
CiteScore
3.70
自引率
5.60%
发文量
111
审稿时长
8 months
期刊介绍: The International Journal for Numerical Methods in Fluids publishes refereed papers describing significant developments in computational methods that are applicable to scientific and engineering problems in fluid mechanics, fluid dynamics, micro and bio fluidics, and fluid-structure interaction. Numerical methods for solving ancillary equations, such as transport and advection and diffusion, are also relevant. The Editors encourage contributions in the areas of multi-physics, multi-disciplinary and multi-scale problems involving fluid subsystems, verification and validation, uncertainty quantification, and model reduction. Numerical examples that illustrate the described methods or their accuracy are in general expected. Discussions of papers already in print are also considered. However, papers dealing strictly with applications of existing methods or dealing with areas of research that are not deemed to be cutting edge by the Editors will not be considered for review. The journal publishes full-length papers, which should normally be less than 25 journal pages in length. Two-part papers are discouraged unless considered necessary by the Editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信