Numerical Prediction of Cavitation Erosion Risk Based on a New Erosion Indicator

IF 1.7 4区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Xiaoyu Wang, Junqi Ma, Tian Wang, Qiang Sun
{"title":"Numerical Prediction of Cavitation Erosion Risk Based on a New Erosion Indicator","authors":"Xiaoyu Wang,&nbsp;Junqi Ma,&nbsp;Tian Wang,&nbsp;Qiang Sun","doi":"10.1002/fld.5347","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Cavitation erosion would degrade the performance of the fluid machinery. To improve the reliability and prolong the life span of fluid machinery, it is necessary to study the mechanism of cavitation erosion and predict the possibility of erosion. Since the erosion power to be measured and calculated is closer to the actual state of cavitation, a new cavitation erosion indicator e<sub>pp</sub> model based on erosion power is proposed, which can reflect the size and region of the erosion generated by cavitation more precisely. Concerning the cases of the axisymmetric nozzle and venturi tube, the prediction of cavitation erosion based on the newly proposed indicator is illustrated. It is found that cavitation erosion mainly occurs near the maximum margin of the cavitation region. This research indicates the possible erosion state of fluid machinery in a cavitation environment and provides a new approach to estimate the state of cavitation erosion.</p>\n </div>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"97 3","pages":"329-344"},"PeriodicalIF":1.7000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Fluids","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fld.5347","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Cavitation erosion would degrade the performance of the fluid machinery. To improve the reliability and prolong the life span of fluid machinery, it is necessary to study the mechanism of cavitation erosion and predict the possibility of erosion. Since the erosion power to be measured and calculated is closer to the actual state of cavitation, a new cavitation erosion indicator epp model based on erosion power is proposed, which can reflect the size and region of the erosion generated by cavitation more precisely. Concerning the cases of the axisymmetric nozzle and venturi tube, the prediction of cavitation erosion based on the newly proposed indicator is illustrated. It is found that cavitation erosion mainly occurs near the maximum margin of the cavitation region. This research indicates the possible erosion state of fluid machinery in a cavitation environment and provides a new approach to estimate the state of cavitation erosion.

基于新型侵蚀指标的空化侵蚀风险数值预测
空化侵蚀会降低流体机械的性能。为了提高流体机械的可靠性,延长其使用寿命,有必要对空化侵蚀机理进行研究,并对空化侵蚀的可能性进行预测。由于所测计算的侵蚀功率更接近于实际空化状态,提出了一种新的基于侵蚀功率的空化侵蚀指标epp模型,该模型能更准确地反映空化所产生的侵蚀的大小和范围。以轴对称喷管和文丘里管为例,给出了基于新指标的空化侵蚀预测方法。发现空化侵蚀主要发生在空化区最大边缘附近。该研究揭示了流体机械在空化环境下可能的侵蚀状态,为空化侵蚀状态的估计提供了一种新的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal for Numerical Methods in Fluids
International Journal for Numerical Methods in Fluids 物理-计算机:跨学科应用
CiteScore
3.70
自引率
5.60%
发文量
111
审稿时长
8 months
期刊介绍: The International Journal for Numerical Methods in Fluids publishes refereed papers describing significant developments in computational methods that are applicable to scientific and engineering problems in fluid mechanics, fluid dynamics, micro and bio fluidics, and fluid-structure interaction. Numerical methods for solving ancillary equations, such as transport and advection and diffusion, are also relevant. The Editors encourage contributions in the areas of multi-physics, multi-disciplinary and multi-scale problems involving fluid subsystems, verification and validation, uncertainty quantification, and model reduction. Numerical examples that illustrate the described methods or their accuracy are in general expected. Discussions of papers already in print are also considered. However, papers dealing strictly with applications of existing methods or dealing with areas of research that are not deemed to be cutting edge by the Editors will not be considered for review. The journal publishes full-length papers, which should normally be less than 25 journal pages in length. Two-part papers are discouraged unless considered necessary by the Editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信