Journal of Complexity最新文献

筛选
英文 中文
Tractability of L2-approximation and integration in weighted Hermite spaces of finite smoothness 有限光滑加权Hermite空间中L2逼近和积分的可牵引性
IF 1.7 2区 数学
Journal of Complexity Pub Date : 2023-10-01 DOI: 10.1016/j.jco.2023.101768
Gunther Leobacher , Friedrich Pillichshammer , Adrian Ebert
{"title":"Tractability of L2-approximation and integration in weighted Hermite spaces of finite smoothness","authors":"Gunther Leobacher ,&nbsp;Friedrich Pillichshammer ,&nbsp;Adrian Ebert","doi":"10.1016/j.jco.2023.101768","DOIUrl":"https://doi.org/10.1016/j.jco.2023.101768","url":null,"abstract":"<div><p>In this paper we consider integration and <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-approximation for functions over <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>s</mi></mrow></msup></math></span> from weighted Hermite spaces. The first part of the paper is devoted to a comparison of several weighted Hermite spaces that appear in literature, which is interesting on its own. Then we study tractability of the integration and <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-approximation problem for the introduced Hermite spaces, which describes the growth rate of the information complexity when the error threshold <em>ε</em> tends to 0 and the problem dimension <em>s</em> grows to infinity. Our main results are characterizations of tractability in terms of the involved weights, which model the importance of the successive coordinate directions for functions from the weighted Hermite spaces.</p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50198403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expected multivolumes of random amoebas 预期的多卷随机变形虫
IF 1.7 2区 数学
Journal of Complexity Pub Date : 2023-09-28 DOI: 10.1016/j.jco.2023.101802
Turgay Bayraktar , Ali Ulaş Özgür Kişisel
{"title":"Expected multivolumes of random amoebas","authors":"Turgay Bayraktar ,&nbsp;Ali Ulaş Özgür Kişisel","doi":"10.1016/j.jco.2023.101802","DOIUrl":"https://doi.org/10.1016/j.jco.2023.101802","url":null,"abstract":"<div><p>We compute the expected multivolume of the amoeba of a random half dimensional complete intersection in <span><math><msup><mrow><mi>CP</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msup></math></span>. We also give a relative generalization of our result to the toric case.</p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49886730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A strongly monotonic polygonal Euler scheme 强单调多边形欧拉格式
IF 1.7 2区 数学
Journal of Complexity Pub Date : 2023-09-01 DOI: 10.1016/j.jco.2023.101801
Tim Johnston, Sotirios Sabanis
{"title":"A strongly monotonic polygonal Euler scheme","authors":"Tim Johnston,&nbsp;Sotirios Sabanis","doi":"10.1016/j.jco.2023.101801","DOIUrl":"https://doi.org/10.1016/j.jco.2023.101801","url":null,"abstract":"<div><p>In recent years tamed schemes have become an important technique for simulating SDEs and SPDEs whose continuous coefficients display superlinear growth. The taming method involves curbing the growth of the coefficients as a function of stepsize, but so far has not been adapted to preserve the monotonicity of the coefficients. This has arisen as an issue in <span>[4]</span>, where the lack of a strongly monotonic tamed scheme forces strong conditions on the setting. In this article we give a novel and explicit method for truncating monotonic functions in separable real Hilbert spaces, and show how this can be used to define a polygonal (tamed) Euler scheme on finite dimensional space, preserving the monotonicity of the drift coefficient, and converging to the true solution at the same rate as the classical Euler scheme for Lipschitz coefficients. Our construction is the first explicit method for truncating monotone functions we are aware of, and the first in infinite dimensions.</p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49887910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
On the power of standard information for tractability for L∞ approximation of periodic functions in the worst case setting 在最坏情况下周期函数L∞逼近的可跟踪性的标准信息幂
IF 1.7 2区 数学
Journal of Complexity Pub Date : 2023-08-22 DOI: 10.1016/j.jco.2023.101790
Jiaxin Geng, Heping Wang
{"title":"On the power of standard information for tractability for L∞ approximation of periodic functions in the worst case setting","authors":"Jiaxin Geng,&nbsp;Heping Wang","doi":"10.1016/j.jco.2023.101790","DOIUrl":"https://doi.org/10.1016/j.jco.2023.101790","url":null,"abstract":"<div><p>We study multivariate approximation of periodic functions in the worst case setting with the error measured in the <span><math><msub><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span> norm. We consider algorithms that use standard information <span><math><msup><mrow><mi>Λ</mi></mrow><mrow><mi>std</mi></mrow></msup></math></span> consisting of function values or general linear information <span><math><msup><mrow><mi>Λ</mi></mrow><mrow><mi>all</mi></mrow></msup></math></span> consisting of arbitrary continuous linear functionals. We investigate equivalences of various notions of algebraic and exponential tractability for <span><math><msup><mrow><mi>Λ</mi></mrow><mrow><mi>std</mi></mrow></msup></math></span> and <span><math><msup><mrow><mi>Λ</mi></mrow><mrow><mi>all</mi></mrow></msup></math></span> under the absolute or normalized error criterion, and show that the power of <span><math><msup><mrow><mi>Λ</mi></mrow><mrow><mi>std</mi></mrow></msup></math></span> is the same as the one of <span><math><msup><mrow><mi>Λ</mi></mrow><mrow><mi>all</mi></mrow></msup></math></span> for various notions of algebraic and exponential tractability. Our results can be applied to weighted Korobov spaces and Korobov spaces with exponential weights. This gives a special solution to Open Problem 145 as posed by Novak and Woźniakowski (2012) <span>[40]</span>.</p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49887908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Changes of the Editorial Board 编辑委员会的变动
IF 1.7 2区 数学
Journal of Complexity Pub Date : 2023-08-22 DOI: 10.1016/j.jco.2023.101792
Erich Novak
{"title":"Changes of the Editorial Board","authors":"Erich Novak","doi":"10.1016/j.jco.2023.101792","DOIUrl":"https://doi.org/10.1016/j.jco.2023.101792","url":null,"abstract":"","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49877024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bypassing the quadrature exactness assumption of hyperinterpolation on the sphere 绕过球面上超插值的正交精度假设
IF 1.7 2区 数学
Journal of Complexity Pub Date : 2023-08-18 DOI: 10.1016/j.jco.2023.101789
Congpei An , Hao-Ning Wu
{"title":"Bypassing the quadrature exactness assumption of hyperinterpolation on the sphere","authors":"Congpei An ,&nbsp;Hao-Ning Wu","doi":"10.1016/j.jco.2023.101789","DOIUrl":"https://doi.org/10.1016/j.jco.2023.101789","url":null,"abstract":"<div><p>This paper focuses on the approximation of continuous functions on the unit sphere by spherical polynomials of degree <em>n</em> via hyperinterpolation. Hyperinterpolation of degree <em>n</em> is a discrete approximation of the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-orthogonal projection of the same degree with its Fourier coefficients evaluated by a positive-weight quadrature rule that exactly integrates all spherical polynomials of degree at most 2<em>n</em>. This paper aims to bypass this quadrature exactness assumption by replacing it with the Marcinkiewicz–Zygmund property proposed in a previous paper. Consequently, hyperinterpolation can be constructed by a positive-weight quadrature rule (not necessarily with quadrature exactness). This scheme is referred to as <em>unfettered hyperinterpolation</em>. This paper provides a reasonable error estimate for unfettered hyperinterpolation. The error estimate generally consists of two terms: a term representing the error estimate of the original hyperinterpolation of full quadrature exactness and another introduced as compensation for the loss of exactness degrees. A guide to controlling the newly introduced term in practice is provided. In particular, if the quadrature points form a quasi-Monte Carlo (QMC) design, then there is a refined error estimate. Numerical experiments verify the error estimates and the practical guide.</p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49887909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Convergence of the Gauss-Newton method for convex composite optimization problems under majorant condition on Riemannian manifolds 黎曼流形上凸复合优化问题的主要条件下高斯-牛顿法的收敛性
IF 1.7 2区 数学
Journal of Complexity Pub Date : 2023-08-09 DOI: 10.1016/j.jco.2023.101788
Qamrul Hasan Ansari , Moin Uddin , Jen-Chih Yao
{"title":"Convergence of the Gauss-Newton method for convex composite optimization problems under majorant condition on Riemannian manifolds","authors":"Qamrul Hasan Ansari ,&nbsp;Moin Uddin ,&nbsp;Jen-Chih Yao","doi":"10.1016/j.jco.2023.101788","DOIUrl":"10.1016/j.jco.2023.101788","url":null,"abstract":"<div><p>In this paper, we consider convex composite optimization problems on Riemannian manifolds, and discuss the semi-local convergence of the Gauss-Newton method with quasi-regular initial point and under the majorant condition. As special cases, we also discuss the convergence of the sequence generated by the Gauss-Newton method under Lipschitz-type condition, or under <em>γ</em>-condition.</p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42426919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The minimal radius of Galerkin information for the problem of numerical differentiation 数值微分问题的伽辽金信息的最小半径
IF 1.7 2区 数学
Journal of Complexity Pub Date : 2023-08-05 DOI: 10.1016/j.jco.2023.101787
S.G. Solodky, S.A. Stasyuk
{"title":"The minimal radius of Galerkin information for the problem of numerical differentiation","authors":"S.G. Solodky,&nbsp;S.A. Stasyuk","doi":"10.1016/j.jco.2023.101787","DOIUrl":"10.1016/j.jco.2023.101787","url":null,"abstract":"<div><p>The problem of numerical differentiation<span> for periodic functions with finite smoothness is investigated. For multivariate functions<span>, different variants of the truncation method are constructed and their approximation properties are obtained. Based on these results, sharp bounds (in the power scale) of the minimal radius of Galerkin information for the problem under study are found.</span></span></p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42869659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sampling numbers of smoothness classes via ℓ1-minimization 通过1-最小化得到平滑类的采样个数
IF 1.7 2区 数学
Journal of Complexity Pub Date : 2023-08-05 DOI: 10.1016/j.jco.2023.101786
Thomas Jahn , Tino Ullrich , Felix Voigtlaender
{"title":"Sampling numbers of smoothness classes via ℓ1-minimization","authors":"Thomas Jahn ,&nbsp;Tino Ullrich ,&nbsp;Felix Voigtlaender","doi":"10.1016/j.jco.2023.101786","DOIUrl":"https://doi.org/10.1016/j.jco.2023.101786","url":null,"abstract":"<div><p>Using techniques developed recently in the field of compressed sensing we prove new upper bounds for general (nonlinear) sampling numbers of (quasi-)Banach smoothness spaces in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span><span>. In particular, we show that in relevant cases such as mixed and isotropic weighted Wiener classes or Sobolev spaces with mixed smoothness, sampling numbers in </span><span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> can be upper bounded by best <em>n</em><span>-term trigonometric widths in </span><span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span>. We describe a recovery procedure from <em>m</em> function values based on <span><math><msup><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-minimization (basis pursuit denoising). With this method, a significant gain in the rate of convergence compared to recently developed linear recovery methods is achieved. In this deterministic worst-case setting we see an additional speed-up of <span><math><msup><mrow><mi>m</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></math></span> (up to log factors) compared to linear methods in case of weighted Wiener spaces. For their quasi-Banach counterparts even arbitrary polynomial speed-up is possible. Surprisingly, our approach allows to recover mixed smoothness Sobolev functions belonging to <span><math><msubsup><mrow><mi>S</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>r</mi></mrow></msubsup><mi>W</mi><mo>(</mo><msup><mrow><mi>T</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> on the <em>d</em>-torus with a logarithmically better rate of convergence than any linear method can achieve when <span><math><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mn>2</mn></math></span> and <em>d</em> is large. This effect is not present for isotropic Sobolev spaces.</p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49877022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Random-prime–fixed-vector randomised lattice-based algorithm for high-dimensional integration 高维积分的随机素数-固定向量随机格算法
IF 1.7 2区 数学
Journal of Complexity Pub Date : 2023-08-02 DOI: 10.1016/j.jco.2023.101785
Frances Y. Kuo , Dirk Nuyens , Laurence Wilkes
{"title":"Random-prime–fixed-vector randomised lattice-based algorithm for high-dimensional integration","authors":"Frances Y. Kuo ,&nbsp;Dirk Nuyens ,&nbsp;Laurence Wilkes","doi":"10.1016/j.jco.2023.101785","DOIUrl":"https://doi.org/10.1016/j.jco.2023.101785","url":null,"abstract":"<div><p>We show that a very simple randomised algorithm for numerical integration can produce a near optimal rate of convergence for integrals of functions in the <em>d</em><span>-dimensional weighted Korobov space. This algorithm uses a lattice<span> rule with a fixed generating vector and the only random element is the choice of the number of function evaluations. For a given computational budget </span></span><em>n</em> of a maximum allowed number of function evaluations, we uniformly pick a prime <em>p</em> in the range <span><math><mi>n</mi><mo>/</mo><mn>2</mn><mo>&lt;</mo><mi>p</mi><mo>≤</mo><mi>n</mi></math></span>. We show error bounds for the randomised error, which is defined as the worst case expected error, of the form <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mi>α</mi><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>+</mo><mi>δ</mi></mrow></msup><mo>)</mo></math></span>, with <span><math><mi>δ</mi><mo>&gt;</mo><mn>0</mn></math></span>, for a Korobov space with smoothness <span><math><mi>α</mi><mo>&gt;</mo><mn>1</mn><mo>/</mo><mn>2</mn></math></span> and general weights. The implied constant in the bound is dimension-independent given the usual conditions on the weights. We present an algorithm that can construct suitable generating vectors <em>offline</em> ahead of time at cost <span><math><mi>O</mi><mo>(</mo><mi>d</mi><msup><mrow><mi>n</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>/</mo><mi>ln</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> when the weight parameters defining the Korobov spaces are so-called product weights. For this case, numerical experiments confirm our theory that the new randomised algorithm achieves the near optimal rate of the randomised error.</p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49877023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信