具有超线性增长和片断连续漂移、超线性增长和局部赫尔德连续扩散的 SDE 的驯服-自适应欧拉-马鲁山近似法

IF 1.8 2区 数学 Q1 MATHEMATICS
Minh-Thang Do , Hoang-Long Ngo , Nhat-An Pho
{"title":"具有超线性增长和片断连续漂移、超线性增长和局部赫尔德连续扩散的 SDE 的驯服-自适应欧拉-马鲁山近似法","authors":"Minh-Thang Do ,&nbsp;Hoang-Long Ngo ,&nbsp;Nhat-An Pho","doi":"10.1016/j.jco.2024.101833","DOIUrl":null,"url":null,"abstract":"<div><p><span>In this paper, we consider stochastic differential equations<span> whose drift coefficient is superlinearly growing and piecewise continuous, and whose diffusion coefficient is superlinearly growing and locally Hölder continuous. We first prove the existence and uniqueness of solution to such stochastic differential equations and then propose a tamed-adaptive Euler-Maruyama approximation scheme. We study the rate of convergence in </span></span><span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span><span>-norm of the scheme in both finite and infinite time intervals.</span></p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tamed-adaptive Euler-Maruyama approximation for SDEs with superlinearly growing and piecewise continuous drift, superlinearly growing and locally Hölder continuous diffusion\",\"authors\":\"Minh-Thang Do ,&nbsp;Hoang-Long Ngo ,&nbsp;Nhat-An Pho\",\"doi\":\"10.1016/j.jco.2024.101833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>In this paper, we consider stochastic differential equations<span> whose drift coefficient is superlinearly growing and piecewise continuous, and whose diffusion coefficient is superlinearly growing and locally Hölder continuous. We first prove the existence and uniqueness of solution to such stochastic differential equations and then propose a tamed-adaptive Euler-Maruyama approximation scheme. We study the rate of convergence in </span></span><span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span><span>-norm of the scheme in both finite and infinite time intervals.</span></p></div>\",\"PeriodicalId\":50227,\"journal\":{\"name\":\"Journal of Complexity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Complexity\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0885064X24000104\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complexity","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X24000104","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑了漂移系数为超线性增长且片断连续的随机微分方程,以及扩散系数为超线性增长且局部荷尔德连续的随机微分方程。我们首先证明了这类随机微分方程解的存在性和唯一性,然后提出了一种驯服自适应的 Euler-Maruyama 近似方案。我们研究了该方案在有限和无限时间间隔内的 L1 值收敛速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tamed-adaptive Euler-Maruyama approximation for SDEs with superlinearly growing and piecewise continuous drift, superlinearly growing and locally Hölder continuous diffusion

In this paper, we consider stochastic differential equations whose drift coefficient is superlinearly growing and piecewise continuous, and whose diffusion coefficient is superlinearly growing and locally Hölder continuous. We first prove the existence and uniqueness of solution to such stochastic differential equations and then propose a tamed-adaptive Euler-Maruyama approximation scheme. We study the rate of convergence in L1-norm of the scheme in both finite and infinite time intervals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Complexity
Journal of Complexity 工程技术-计算机:理论方法
CiteScore
3.10
自引率
17.60%
发文量
57
审稿时长
>12 weeks
期刊介绍: The multidisciplinary Journal of Complexity publishes original research papers that contain substantial mathematical results on complexity as broadly conceived. Outstanding review papers will also be published. In the area of computational complexity, the focus is on complexity over the reals, with the emphasis on lower bounds and optimal algorithms. The Journal of Complexity also publishes articles that provide major new algorithms or make important progress on upper bounds. Other models of computation, such as the Turing machine model, are also of interest. Computational complexity results in a wide variety of areas are solicited. Areas Include: • Approximation theory • Biomedical computing • Compressed computing and sensing • Computational finance • Computational number theory • Computational stochastics • Control theory • Cryptography • Design of experiments • Differential equations • Discrete problems • Distributed and parallel computation • High and infinite-dimensional problems • Information-based complexity • Inverse and ill-posed problems • Machine learning • Markov chain Monte Carlo • Monte Carlo and quasi-Monte Carlo • Multivariate integration and approximation • Noisy data • Nonlinear and algebraic equations • Numerical analysis • Operator equations • Optimization • Quantum computing • Scientific computation • Tractability of multivariate problems • Vision and image understanding.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信