锥体上的同质算法和可解问题

IF 1.8 2区 数学 Q1 MATHEMATICS
David Krieg , Peter Kritzer
{"title":"锥体上的同质算法和可解问题","authors":"David Krieg ,&nbsp;Peter Kritzer","doi":"10.1016/j.jco.2024.101840","DOIUrl":null,"url":null,"abstract":"<div><p>We consider linear problems in the worst-case setting. That is, given a linear operator and a pool of admissible linear measurements, we want to approximate the operator uniformly on a convex and balanced set by means of algorithms using at most <em>n</em> such measurements. It is known that, in general, linear algorithms do not yield an optimal approximation. However, as we show here, an optimal approximation can always be obtained with a homogeneous algorithm. This is of interest for two reasons. First, the homogeneity allows us to extend any error bound on the unit ball to the full input space. Second, homogeneous algorithms are better suited to tackle problems on cones, a scenario far less understood than the classical situation of balls. We use the optimality of homogeneous algorithms to prove solvability for a family of problems defined on cones. We illustrate our results by several examples.</p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0885064X24000177/pdfft?md5=a93de3c8d5e250c4bbebc0c932ec7f46&pid=1-s2.0-S0885064X24000177-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Homogeneous algorithms and solvable problems on cones\",\"authors\":\"David Krieg ,&nbsp;Peter Kritzer\",\"doi\":\"10.1016/j.jco.2024.101840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider linear problems in the worst-case setting. That is, given a linear operator and a pool of admissible linear measurements, we want to approximate the operator uniformly on a convex and balanced set by means of algorithms using at most <em>n</em> such measurements. It is known that, in general, linear algorithms do not yield an optimal approximation. However, as we show here, an optimal approximation can always be obtained with a homogeneous algorithm. This is of interest for two reasons. First, the homogeneity allows us to extend any error bound on the unit ball to the full input space. Second, homogeneous algorithms are better suited to tackle problems on cones, a scenario far less understood than the classical situation of balls. We use the optimality of homogeneous algorithms to prove solvability for a family of problems defined on cones. We illustrate our results by several examples.</p></div>\",\"PeriodicalId\":50227,\"journal\":{\"name\":\"Journal of Complexity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0885064X24000177/pdfft?md5=a93de3c8d5e250c4bbebc0c932ec7f46&pid=1-s2.0-S0885064X24000177-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Complexity\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0885064X24000177\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complexity","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X24000177","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的是最坏情况下的线性问题。也就是说,给定一个线性算子和一组可接受的线性测量值,我们希望通过最多使用 n 个此类测量值的算法,在一个凸平衡集合上均匀地近似算子。众所周知,一般来说,线性算法不会产生最佳近似值。然而,正如我们在此所展示的,同质算法总能获得最佳近似值。我们之所以对此感兴趣,有两个原因。首先,同质算法允许我们将单位球上的任何误差约束扩展到整个输入空间。其次,同质算法更适合解决锥体上的问题,而对锥体问题的理解远不如对球的经典理解。我们利用同构算法的最优性来证明定义在圆锥上的一系列问题的可解性。我们通过几个例子来说明我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Homogeneous algorithms and solvable problems on cones

We consider linear problems in the worst-case setting. That is, given a linear operator and a pool of admissible linear measurements, we want to approximate the operator uniformly on a convex and balanced set by means of algorithms using at most n such measurements. It is known that, in general, linear algorithms do not yield an optimal approximation. However, as we show here, an optimal approximation can always be obtained with a homogeneous algorithm. This is of interest for two reasons. First, the homogeneity allows us to extend any error bound on the unit ball to the full input space. Second, homogeneous algorithms are better suited to tackle problems on cones, a scenario far less understood than the classical situation of balls. We use the optimality of homogeneous algorithms to prove solvability for a family of problems defined on cones. We illustrate our results by several examples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Complexity
Journal of Complexity 工程技术-计算机:理论方法
CiteScore
3.10
自引率
17.60%
发文量
57
审稿时长
>12 weeks
期刊介绍: The multidisciplinary Journal of Complexity publishes original research papers that contain substantial mathematical results on complexity as broadly conceived. Outstanding review papers will also be published. In the area of computational complexity, the focus is on complexity over the reals, with the emphasis on lower bounds and optimal algorithms. The Journal of Complexity also publishes articles that provide major new algorithms or make important progress on upper bounds. Other models of computation, such as the Turing machine model, are also of interest. Computational complexity results in a wide variety of areas are solicited. Areas Include: • Approximation theory • Biomedical computing • Compressed computing and sensing • Computational finance • Computational number theory • Computational stochastics • Control theory • Cryptography • Design of experiments • Differential equations • Discrete problems • Distributed and parallel computation • High and infinite-dimensional problems • Information-based complexity • Inverse and ill-posed problems • Machine learning • Markov chain Monte Carlo • Monte Carlo and quasi-Monte Carlo • Multivariate integration and approximation • Noisy data • Nonlinear and algebraic equations • Numerical analysis • Operator equations • Optimization • Quantum computing • Scientific computation • Tractability of multivariate problems • Vision and image understanding.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信