{"title":"锥体上的同质算法和可解问题","authors":"David Krieg , Peter Kritzer","doi":"10.1016/j.jco.2024.101840","DOIUrl":null,"url":null,"abstract":"<div><p>We consider linear problems in the worst-case setting. That is, given a linear operator and a pool of admissible linear measurements, we want to approximate the operator uniformly on a convex and balanced set by means of algorithms using at most <em>n</em> such measurements. It is known that, in general, linear algorithms do not yield an optimal approximation. However, as we show here, an optimal approximation can always be obtained with a homogeneous algorithm. This is of interest for two reasons. First, the homogeneity allows us to extend any error bound on the unit ball to the full input space. Second, homogeneous algorithms are better suited to tackle problems on cones, a scenario far less understood than the classical situation of balls. We use the optimality of homogeneous algorithms to prove solvability for a family of problems defined on cones. We illustrate our results by several examples.</p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0885064X24000177/pdfft?md5=a93de3c8d5e250c4bbebc0c932ec7f46&pid=1-s2.0-S0885064X24000177-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Homogeneous algorithms and solvable problems on cones\",\"authors\":\"David Krieg , Peter Kritzer\",\"doi\":\"10.1016/j.jco.2024.101840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider linear problems in the worst-case setting. That is, given a linear operator and a pool of admissible linear measurements, we want to approximate the operator uniformly on a convex and balanced set by means of algorithms using at most <em>n</em> such measurements. It is known that, in general, linear algorithms do not yield an optimal approximation. However, as we show here, an optimal approximation can always be obtained with a homogeneous algorithm. This is of interest for two reasons. First, the homogeneity allows us to extend any error bound on the unit ball to the full input space. Second, homogeneous algorithms are better suited to tackle problems on cones, a scenario far less understood than the classical situation of balls. We use the optimality of homogeneous algorithms to prove solvability for a family of problems defined on cones. We illustrate our results by several examples.</p></div>\",\"PeriodicalId\":50227,\"journal\":{\"name\":\"Journal of Complexity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0885064X24000177/pdfft?md5=a93de3c8d5e250c4bbebc0c932ec7f46&pid=1-s2.0-S0885064X24000177-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Complexity\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0885064X24000177\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complexity","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X24000177","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们考虑的是最坏情况下的线性问题。也就是说,给定一个线性算子和一组可接受的线性测量值,我们希望通过最多使用 n 个此类测量值的算法,在一个凸平衡集合上均匀地近似算子。众所周知,一般来说,线性算法不会产生最佳近似值。然而,正如我们在此所展示的,同质算法总能获得最佳近似值。我们之所以对此感兴趣,有两个原因。首先,同质算法允许我们将单位球上的任何误差约束扩展到整个输入空间。其次,同质算法更适合解决锥体上的问题,而对锥体问题的理解远不如对球的经典理解。我们利用同构算法的最优性来证明定义在圆锥上的一系列问题的可解性。我们通过几个例子来说明我们的结果。
Homogeneous algorithms and solvable problems on cones
We consider linear problems in the worst-case setting. That is, given a linear operator and a pool of admissible linear measurements, we want to approximate the operator uniformly on a convex and balanced set by means of algorithms using at most n such measurements. It is known that, in general, linear algorithms do not yield an optimal approximation. However, as we show here, an optimal approximation can always be obtained with a homogeneous algorithm. This is of interest for two reasons. First, the homogeneity allows us to extend any error bound on the unit ball to the full input space. Second, homogeneous algorithms are better suited to tackle problems on cones, a scenario far less understood than the classical situation of balls. We use the optimality of homogeneous algorithms to prove solvability for a family of problems defined on cones. We illustrate our results by several examples.
期刊介绍:
The multidisciplinary Journal of Complexity publishes original research papers that contain substantial mathematical results on complexity as broadly conceived. Outstanding review papers will also be published. In the area of computational complexity, the focus is on complexity over the reals, with the emphasis on lower bounds and optimal algorithms. The Journal of Complexity also publishes articles that provide major new algorithms or make important progress on upper bounds. Other models of computation, such as the Turing machine model, are also of interest. Computational complexity results in a wide variety of areas are solicited.
Areas Include:
• Approximation theory
• Biomedical computing
• Compressed computing and sensing
• Computational finance
• Computational number theory
• Computational stochastics
• Control theory
• Cryptography
• Design of experiments
• Differential equations
• Discrete problems
• Distributed and parallel computation
• High and infinite-dimensional problems
• Information-based complexity
• Inverse and ill-posed problems
• Machine learning
• Markov chain Monte Carlo
• Monte Carlo and quasi-Monte Carlo
• Multivariate integration and approximation
• Noisy data
• Nonlinear and algebraic equations
• Numerical analysis
• Operator equations
• Optimization
• Quantum computing
• Scientific computation
• Tractability of multivariate problems
• Vision and image understanding.