Radius of information for two intersected centered hyperellipsoids and implications in optimal recovery from inaccurate data

IF 1.8 2区 数学 Q1 MATHEMATICS
Simon Foucart , Chunyang Liao
{"title":"Radius of information for two intersected centered hyperellipsoids and implications in optimal recovery from inaccurate data","authors":"Simon Foucart ,&nbsp;Chunyang Liao","doi":"10.1016/j.jco.2024.101841","DOIUrl":null,"url":null,"abstract":"<div><p>For objects belonging to a known model set and observed through a prescribed linear process, we aim at determining methods to recover linear quantities of these objects that are optimal from a worst-case perspective. Working in a Hilbert setting, we show that, if the model set is the intersection of two hyperellipsoids centered at the origin, then there is an optimal recovery method which is linear. It is specifically given by a constrained regularization procedure whose parameters can be precomputed by semidefinite programming. This general framework can be applied to several scenarios, including the two-space problem and problems involving <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-inaccurate data. It can also be applied to the problem of recovery from <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-inaccurate data. For the latter, we reach the conclusion of existence of an optimal recovery method which is linear, again given by constrained regularization, under a computationally verifiable sufficient condition.</p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complexity","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X24000189","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For objects belonging to a known model set and observed through a prescribed linear process, we aim at determining methods to recover linear quantities of these objects that are optimal from a worst-case perspective. Working in a Hilbert setting, we show that, if the model set is the intersection of two hyperellipsoids centered at the origin, then there is an optimal recovery method which is linear. It is specifically given by a constrained regularization procedure whose parameters can be precomputed by semidefinite programming. This general framework can be applied to several scenarios, including the two-space problem and problems involving 2-inaccurate data. It can also be applied to the problem of recovery from 1-inaccurate data. For the latter, we reach the conclusion of existence of an optimal recovery method which is linear, again given by constrained regularization, under a computationally verifiable sufficient condition.

两个相交居中的超椭球体的信息半径及其对从不准确数据中优化恢复的影响
对于属于已知模型集并通过规定的线性过程观测到的物体,我们的目标是确定从最坏情况角度来看最优的恢复这些物体线性量的方法。在希尔伯特环境下,我们证明,如果模型集是以原点为中心的两个超椭球面的交集,那么存在一种线性的最优恢复方法。具体来说,它是由一个受约束的正则化程序给出的,其参数可以通过半定量编程预先计算。这个一般框架可应用于多种情况,包括两空间问题和涉及 ℓ2 不精确数据的问题。它还可以应用于从ℓ1 不精确数据中恢复的问题。对于后者,我们得出了存在最优恢复方法的结论,这种方法是线性的,同样是由约束正则化给出的,而且是在一个可计算验证的充分条件下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Complexity
Journal of Complexity 工程技术-计算机:理论方法
CiteScore
3.10
自引率
17.60%
发文量
57
审稿时长
>12 weeks
期刊介绍: The multidisciplinary Journal of Complexity publishes original research papers that contain substantial mathematical results on complexity as broadly conceived. Outstanding review papers will also be published. In the area of computational complexity, the focus is on complexity over the reals, with the emphasis on lower bounds and optimal algorithms. The Journal of Complexity also publishes articles that provide major new algorithms or make important progress on upper bounds. Other models of computation, such as the Turing machine model, are also of interest. Computational complexity results in a wide variety of areas are solicited. Areas Include: • Approximation theory • Biomedical computing • Compressed computing and sensing • Computational finance • Computational number theory • Computational stochastics • Control theory • Cryptography • Design of experiments • Differential equations • Discrete problems • Distributed and parallel computation • High and infinite-dimensional problems • Information-based complexity • Inverse and ill-posed problems • Machine learning • Markov chain Monte Carlo • Monte Carlo and quasi-Monte Carlo • Multivariate integration and approximation • Noisy data • Nonlinear and algebraic equations • Numerical analysis • Operator equations • Optimization • Quantum computing • Scientific computation • Tractability of multivariate problems • Vision and image understanding.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信