关于一类线性回归方法

IF 1.8 2区 数学 Q1 MATHEMATICS
Ying-Ao Wang , Qin Huang , Zhigang Yao , Ye Zhang
{"title":"关于一类线性回归方法","authors":"Ying-Ao Wang ,&nbsp;Qin Huang ,&nbsp;Zhigang Yao ,&nbsp;Ye Zhang","doi":"10.1016/j.jco.2024.101826","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a unified study is presented for the design and analysis of a broad class of linear regression methods. The proposed general framework includes the conventional linear regression methods (such as the least squares regression and the Ridge regression) and some new regression methods (e.g. the Landweber regression and Showalter regression), which have recently been introduced in the fields of optimization and inverse problems. The strong consistency, the reduced mean squared error, the asymptotic Gaussian property, and the best worst case error of this class of linear regression methods are investigated. Various numerical experiments are performed to demonstrate the consistency and efficiency of the proposed class of methods for linear regression.</p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a class of linear regression methods\",\"authors\":\"Ying-Ao Wang ,&nbsp;Qin Huang ,&nbsp;Zhigang Yao ,&nbsp;Ye Zhang\",\"doi\":\"10.1016/j.jco.2024.101826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, a unified study is presented for the design and analysis of a broad class of linear regression methods. The proposed general framework includes the conventional linear regression methods (such as the least squares regression and the Ridge regression) and some new regression methods (e.g. the Landweber regression and Showalter regression), which have recently been introduced in the fields of optimization and inverse problems. The strong consistency, the reduced mean squared error, the asymptotic Gaussian property, and the best worst case error of this class of linear regression methods are investigated. Various numerical experiments are performed to demonstrate the consistency and efficiency of the proposed class of methods for linear regression.</p></div>\",\"PeriodicalId\":50227,\"journal\":{\"name\":\"Journal of Complexity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Complexity\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0885064X24000037\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complexity","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X24000037","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了对一大类线性回归方法的设计和分析的统一研究。所提出的总体框架包括传统的线性回归方法(如最小二乘回归和岭回归)和一些新的回归方法(如 Landweber 回归和 Showalter 回归),这些方法是最近在优化和逆问题领域提出的。研究了这一类线性回归方法的强一致性、减小的均方误差、渐近高斯特性和最佳最坏情况误差。通过各种数值实验证明了所提出的线性回归方法的一致性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a class of linear regression methods

In this paper, a unified study is presented for the design and analysis of a broad class of linear regression methods. The proposed general framework includes the conventional linear regression methods (such as the least squares regression and the Ridge regression) and some new regression methods (e.g. the Landweber regression and Showalter regression), which have recently been introduced in the fields of optimization and inverse problems. The strong consistency, the reduced mean squared error, the asymptotic Gaussian property, and the best worst case error of this class of linear regression methods are investigated. Various numerical experiments are performed to demonstrate the consistency and efficiency of the proposed class of methods for linear regression.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Complexity
Journal of Complexity 工程技术-计算机:理论方法
CiteScore
3.10
自引率
17.60%
发文量
57
审稿时长
>12 weeks
期刊介绍: The multidisciplinary Journal of Complexity publishes original research papers that contain substantial mathematical results on complexity as broadly conceived. Outstanding review papers will also be published. In the area of computational complexity, the focus is on complexity over the reals, with the emphasis on lower bounds and optimal algorithms. The Journal of Complexity also publishes articles that provide major new algorithms or make important progress on upper bounds. Other models of computation, such as the Turing machine model, are also of interest. Computational complexity results in a wide variety of areas are solicited. Areas Include: • Approximation theory • Biomedical computing • Compressed computing and sensing • Computational finance • Computational number theory • Computational stochastics • Control theory • Cryptography • Design of experiments • Differential equations • Discrete problems • Distributed and parallel computation • High and infinite-dimensional problems • Information-based complexity • Inverse and ill-posed problems • Machine learning • Markov chain Monte Carlo • Monte Carlo and quasi-Monte Carlo • Multivariate integration and approximation • Noisy data • Nonlinear and algebraic equations • Numerical analysis • Operator equations • Optimization • Quantum computing • Scientific computation • Tractability of multivariate problems • Vision and image understanding.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信