{"title":"On a class of linear regression methods","authors":"Ying-Ao Wang , Qin Huang , Zhigang Yao , Ye Zhang","doi":"10.1016/j.jco.2024.101826","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a unified study is presented for the design and analysis of a broad class of linear regression methods. The proposed general framework includes the conventional linear regression methods (such as the least squares regression and the Ridge regression) and some new regression methods (e.g. the Landweber regression and Showalter regression), which have recently been introduced in the fields of optimization and inverse problems. The strong consistency, the reduced mean squared error, the asymptotic Gaussian property, and the best worst case error of this class of linear regression methods are investigated. Various numerical experiments are performed to demonstrate the consistency and efficiency of the proposed class of methods for linear regression.</p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complexity","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X24000037","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a unified study is presented for the design and analysis of a broad class of linear regression methods. The proposed general framework includes the conventional linear regression methods (such as the least squares regression and the Ridge regression) and some new regression methods (e.g. the Landweber regression and Showalter regression), which have recently been introduced in the fields of optimization and inverse problems. The strong consistency, the reduced mean squared error, the asymptotic Gaussian property, and the best worst case error of this class of linear regression methods are investigated. Various numerical experiments are performed to demonstrate the consistency and efficiency of the proposed class of methods for linear regression.
期刊介绍:
The multidisciplinary Journal of Complexity publishes original research papers that contain substantial mathematical results on complexity as broadly conceived. Outstanding review papers will also be published. In the area of computational complexity, the focus is on complexity over the reals, with the emphasis on lower bounds and optimal algorithms. The Journal of Complexity also publishes articles that provide major new algorithms or make important progress on upper bounds. Other models of computation, such as the Turing machine model, are also of interest. Computational complexity results in a wide variety of areas are solicited.
Areas Include:
• Approximation theory
• Biomedical computing
• Compressed computing and sensing
• Computational finance
• Computational number theory
• Computational stochastics
• Control theory
• Cryptography
• Design of experiments
• Differential equations
• Discrete problems
• Distributed and parallel computation
• High and infinite-dimensional problems
• Information-based complexity
• Inverse and ill-posed problems
• Machine learning
• Markov chain Monte Carlo
• Monte Carlo and quasi-Monte Carlo
• Multivariate integration and approximation
• Noisy data
• Nonlinear and algebraic equations
• Numerical analysis
• Operator equations
• Optimization
• Quantum computing
• Scientific computation
• Tractability of multivariate problems
• Vision and image understanding.