通过子集选择获得低差异点集的启发式方法

IF 1.8 2区 数学 Q1 MATHEMATICS
François Clément , Carola Doerr , Luís Paquete
{"title":"通过子集选择获得低差异点集的启发式方法","authors":"François Clément ,&nbsp;Carola Doerr ,&nbsp;Luís Paquete","doi":"10.1016/j.jco.2024.101852","DOIUrl":null,"url":null,"abstract":"<div><p>Building upon the exact methods presented in our earlier work (2022) <span>[5]</span>, we introduce a heuristic approach for the star discrepancy subset selection problem. The heuristic gradually improves the current-best subset by replacing one of its elements at a time. While it does not necessarily return an optimal solution, we obtain promising results for all tested dimensions. For example, for moderate sizes <span><math><mn>30</mn><mo>≤</mo><mi>n</mi><mo>≤</mo><mn>240</mn></math></span>, we obtain point sets in dimension 6 with <span><math><msub><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span> star discrepancy up to 35% better than that of the first <em>n</em> points of the Sobol' sequence. Our heuristic works in all dimensions, the main limitation being the precision of the discrepancy calculation algorithms. We provide a comparison with an energy functional introduced by Steinerberger (2019) <span>[31]</span>, showing that our heuristic performs better on all tested instances. Finally, our results give further empirical information on inverse star discrepancy conjectures.</p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"83 ","pages":"Article 101852"},"PeriodicalIF":1.8000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0885064X24000293/pdfft?md5=026f36f25d20579c91a0fc64a95356e5&pid=1-s2.0-S0885064X24000293-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Heuristic approaches to obtain low-discrepancy point sets via subset selection\",\"authors\":\"François Clément ,&nbsp;Carola Doerr ,&nbsp;Luís Paquete\",\"doi\":\"10.1016/j.jco.2024.101852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Building upon the exact methods presented in our earlier work (2022) <span>[5]</span>, we introduce a heuristic approach for the star discrepancy subset selection problem. The heuristic gradually improves the current-best subset by replacing one of its elements at a time. While it does not necessarily return an optimal solution, we obtain promising results for all tested dimensions. For example, for moderate sizes <span><math><mn>30</mn><mo>≤</mo><mi>n</mi><mo>≤</mo><mn>240</mn></math></span>, we obtain point sets in dimension 6 with <span><math><msub><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span> star discrepancy up to 35% better than that of the first <em>n</em> points of the Sobol' sequence. Our heuristic works in all dimensions, the main limitation being the precision of the discrepancy calculation algorithms. We provide a comparison with an energy functional introduced by Steinerberger (2019) <span>[31]</span>, showing that our heuristic performs better on all tested instances. Finally, our results give further empirical information on inverse star discrepancy conjectures.</p></div>\",\"PeriodicalId\":50227,\"journal\":{\"name\":\"Journal of Complexity\",\"volume\":\"83 \",\"pages\":\"Article 101852\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0885064X24000293/pdfft?md5=026f36f25d20579c91a0fc64a95356e5&pid=1-s2.0-S0885064X24000293-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Complexity\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0885064X24000293\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complexity","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X24000293","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在我们早期工作(2022 年)[5] 中提出的精确方法基础上,我们为星形差异子集选择问题引入了一种启发式方法。这种启发式方法通过每次替换一个子集的元素来逐步改进当前最佳子集。虽然不一定能得到最优解,但我们在所有测试维度上都取得了令人满意的结果。例如,对于 30≤n≤240 的中等大小,我们在维度 6 中获得的点集的 L∞ 星形差异比索布尔序列前 n 个点的 L∞ 星形差异高出 35%。我们的启发式适用于所有维度,主要限制在于差异计算算法的精度。我们将启发式与 Steinerberger(2019)[31] 引入的能量函数进行了比较,结果表明我们的启发式在所有测试实例中的表现都更好。最后,我们的结果为逆星差异猜想提供了进一步的经验信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heuristic approaches to obtain low-discrepancy point sets via subset selection

Building upon the exact methods presented in our earlier work (2022) [5], we introduce a heuristic approach for the star discrepancy subset selection problem. The heuristic gradually improves the current-best subset by replacing one of its elements at a time. While it does not necessarily return an optimal solution, we obtain promising results for all tested dimensions. For example, for moderate sizes 30n240, we obtain point sets in dimension 6 with L star discrepancy up to 35% better than that of the first n points of the Sobol' sequence. Our heuristic works in all dimensions, the main limitation being the precision of the discrepancy calculation algorithms. We provide a comparison with an energy functional introduced by Steinerberger (2019) [31], showing that our heuristic performs better on all tested instances. Finally, our results give further empirical information on inverse star discrepancy conjectures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Complexity
Journal of Complexity 工程技术-计算机:理论方法
CiteScore
3.10
自引率
17.60%
发文量
57
审稿时长
>12 weeks
期刊介绍: The multidisciplinary Journal of Complexity publishes original research papers that contain substantial mathematical results on complexity as broadly conceived. Outstanding review papers will also be published. In the area of computational complexity, the focus is on complexity over the reals, with the emphasis on lower bounds and optimal algorithms. The Journal of Complexity also publishes articles that provide major new algorithms or make important progress on upper bounds. Other models of computation, such as the Turing machine model, are also of interest. Computational complexity results in a wide variety of areas are solicited. Areas Include: • Approximation theory • Biomedical computing • Compressed computing and sensing • Computational finance • Computational number theory • Computational stochastics • Control theory • Cryptography • Design of experiments • Differential equations • Discrete problems • Distributed and parallel computation • High and infinite-dimensional problems • Information-based complexity • Inverse and ill-posed problems • Machine learning • Markov chain Monte Carlo • Monte Carlo and quasi-Monte Carlo • Multivariate integration and approximation • Noisy data • Nonlinear and algebraic equations • Numerical analysis • Operator equations • Optimization • Quantum computing • Scientific computation • Tractability of multivariate problems • Vision and image understanding.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信