Asymptotic analysis in multivariate worst case approximation with Gaussian kernels

IF 1.8 2区 数学 Q1 MATHEMATICS
A.A. Khartov , I.A. Limar
{"title":"Asymptotic analysis in multivariate worst case approximation with Gaussian kernels","authors":"A.A. Khartov ,&nbsp;I.A. Limar","doi":"10.1016/j.jco.2024.101838","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a problem of approximation of <em>d</em>-variate functions defined on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> which belong to the Hilbert space with tensor product-type reproducing Gaussian kernel with constant shape parameter. Within worst case setting, we investigate the growth of the information complexity as <span><math><mi>d</mi><mo>→</mo><mo>∞</mo></math></span>. The asymptotics are obtained for the case of fixed error threshold and for the case when it goes to zero as <span><math><mi>d</mi><mo>→</mo><mo>∞</mo></math></span>.</p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complexity","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X24000153","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a problem of approximation of d-variate functions defined on Rd which belong to the Hilbert space with tensor product-type reproducing Gaussian kernel with constant shape parameter. Within worst case setting, we investigate the growth of the information complexity as d. The asymptotics are obtained for the case of fixed error threshold and for the case when it goes to zero as d.

用高斯核进行多变量最坏情况逼近的渐近分析
我们考虑的是定义在 Rd 上的 d 变量函数的近似问题,这些函数属于具有张量乘型再现高斯核且形状参数不变的希尔伯特空间。在最坏情况下,我们研究了信息复杂度随 d→∞ 的增长。在误差阈值固定的情况下,以及当误差阈值随 d→∞ 变为零时,我们得到了渐近线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Complexity
Journal of Complexity 工程技术-计算机:理论方法
CiteScore
3.10
自引率
17.60%
发文量
57
审稿时长
>12 weeks
期刊介绍: The multidisciplinary Journal of Complexity publishes original research papers that contain substantial mathematical results on complexity as broadly conceived. Outstanding review papers will also be published. In the area of computational complexity, the focus is on complexity over the reals, with the emphasis on lower bounds and optimal algorithms. The Journal of Complexity also publishes articles that provide major new algorithms or make important progress on upper bounds. Other models of computation, such as the Turing machine model, are also of interest. Computational complexity results in a wide variety of areas are solicited. Areas Include: • Approximation theory • Biomedical computing • Compressed computing and sensing • Computational finance • Computational number theory • Computational stochastics • Control theory • Cryptography • Design of experiments • Differential equations • Discrete problems • Distributed and parallel computation • High and infinite-dimensional problems • Information-based complexity • Inverse and ill-posed problems • Machine learning • Markov chain Monte Carlo • Monte Carlo and quasi-Monte Carlo • Multivariate integration and approximation • Noisy data • Nonlinear and algebraic equations • Numerical analysis • Operator equations • Optimization • Quantum computing • Scientific computation • Tractability of multivariate problems • Vision and image understanding.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信