{"title":"Linear Monte Carlo quadrature with optimal confidence intervals","authors":"Robert J. Kunsch","doi":"10.1016/j.jco.2024.101851","DOIUrl":"https://doi.org/10.1016/j.jco.2024.101851","url":null,"abstract":"<div><p>We study the numerical integration of functions from isotropic Sobolev spaces <span><math><msubsup><mrow><mi>W</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msubsup><mo>(</mo><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> using finitely many function evaluations within randomized algorithms, aiming for the smallest possible probabilistic error guarantee <span><math><mi>ε</mi><mo>></mo><mn>0</mn></math></span> at confidence level <span><math><mn>1</mn><mo>−</mo><mi>δ</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>. For spaces consisting of continuous functions, non-linear Monte Carlo methods with optimal confidence properties have already been known, in few cases even linear methods that succeed in that respect. In this paper we promote a method called <em>stratified control variates</em> (SCV) and by it show that already linear methods achieve optimal probabilistic error rates in the high smoothness regime without the need to adjust algorithmic parameters to the uncertainty <em>δ</em>. We also analyse a version of SCV in the low smoothness regime where <span><math><msubsup><mrow><mi>W</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msubsup><mo>(</mo><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> may contain functions with singularities. Here, we observe a polynomial dependence of the error on <span><math><msup><mrow><mi>δ</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> in contrast to the logarithmic dependence in the high smoothness regime.</p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0885064X24000281/pdfft?md5=6b29dfcc17f60ddbf6ee19d289e21700&pid=1-s2.0-S0885064X24000281-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140180612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Heuristic approaches to obtain low-discrepancy point sets via subset selection","authors":"François Clément , Carola Doerr , Luís Paquete","doi":"10.1016/j.jco.2024.101852","DOIUrl":"https://doi.org/10.1016/j.jco.2024.101852","url":null,"abstract":"<div><p>Building upon the exact methods presented in our earlier work (2022) <span>[5]</span>, we introduce a heuristic approach for the star discrepancy subset selection problem. The heuristic gradually improves the current-best subset by replacing one of its elements at a time. While it does not necessarily return an optimal solution, we obtain promising results for all tested dimensions. For example, for moderate sizes <span><math><mn>30</mn><mo>≤</mo><mi>n</mi><mo>≤</mo><mn>240</mn></math></span>, we obtain point sets in dimension 6 with <span><math><msub><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span> star discrepancy up to 35% better than that of the first <em>n</em> points of the Sobol' sequence. Our heuristic works in all dimensions, the main limitation being the precision of the discrepancy calculation algorithms. We provide a comparison with an energy functional introduced by Steinerberger (2019) <span>[31]</span>, showing that our heuristic performs better on all tested instances. Finally, our results give further empirical information on inverse star discrepancy conjectures.</p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0885064X24000293/pdfft?md5=026f36f25d20579c91a0fc64a95356e5&pid=1-s2.0-S0885064X24000293-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140190621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Linear implicit approximations of invariant measures of semi-linear SDEs with non-globally Lipschitz coefficients","authors":"Chenxu Pang , Xiaojie Wang , Yue Wu","doi":"10.1016/j.jco.2024.101842","DOIUrl":"https://doi.org/10.1016/j.jco.2024.101842","url":null,"abstract":"<div><p>This article investigates the weak approximation towards the invariant measure of semi-linear stochastic differential equations (SDEs) under non-globally Lipschitz coefficients. For this purpose, we propose a linear-theta-projected Euler (LTPE) scheme, which also admits an invariant measure, to handle the potential influence of the linear stiffness. Under certain assumptions, both the SDE and the corresponding LTPE method are shown to converge exponentially to the underlying invariant measures, respectively. Moreover, with time-independent regularity estimates for the corresponding Kolmogorov equation, the weak error between the numerical invariant measure and the original one can be guaranteed with convergence of order one. In terms of computational complexity, the proposed ergodicity preserving scheme with the nonlinearity explicitly treated has a significant advantage over the ergodicity preserving implicit Euler method in the literature. Numerical experiments are provided to verify our theoretical findings.</p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0885064X24000190/pdfft?md5=196a33f1ce0b753c885d6d05ad1d70a4&pid=1-s2.0-S0885064X24000190-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140188091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Homogeneous algorithms and solvable problems on cones","authors":"David Krieg , Peter Kritzer","doi":"10.1016/j.jco.2024.101840","DOIUrl":"https://doi.org/10.1016/j.jco.2024.101840","url":null,"abstract":"<div><p>We consider linear problems in the worst-case setting. That is, given a linear operator and a pool of admissible linear measurements, we want to approximate the operator uniformly on a convex and balanced set by means of algorithms using at most <em>n</em> such measurements. It is known that, in general, linear algorithms do not yield an optimal approximation. However, as we show here, an optimal approximation can always be obtained with a homogeneous algorithm. This is of interest for two reasons. First, the homogeneity allows us to extend any error bound on the unit ball to the full input space. Second, homogeneous algorithms are better suited to tackle problems on cones, a scenario far less understood than the classical situation of balls. We use the optimality of homogeneous algorithms to prove solvability for a family of problems defined on cones. We illustrate our results by several examples.</p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0885064X24000177/pdfft?md5=a93de3c8d5e250c4bbebc0c932ec7f46&pid=1-s2.0-S0885064X24000177-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140180611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Radius of information for two intersected centered hyperellipsoids and implications in optimal recovery from inaccurate data","authors":"Simon Foucart , Chunyang Liao","doi":"10.1016/j.jco.2024.101841","DOIUrl":"https://doi.org/10.1016/j.jco.2024.101841","url":null,"abstract":"<div><p>For objects belonging to a known model set and observed through a prescribed linear process, we aim at determining methods to recover linear quantities of these objects that are optimal from a worst-case perspective. Working in a Hilbert setting, we show that, if the model set is the intersection of two hyperellipsoids centered at the origin, then there is an optimal recovery method which is linear. It is specifically given by a constrained regularization procedure whose parameters can be precomputed by semidefinite programming. This general framework can be applied to several scenarios, including the two-space problem and problems involving <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-inaccurate data. It can also be applied to the problem of recovery from <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-inaccurate data. For the latter, we reach the conclusion of existence of an optimal recovery method which is linear, again given by constrained regularization, under a computationally verifiable sufficient condition.</p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140123263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A space-time adaptive low-rank method for high-dimensional parabolic partial differential equations","authors":"Markus Bachmayr, Manfred Faldum","doi":"10.1016/j.jco.2024.101839","DOIUrl":"https://doi.org/10.1016/j.jco.2024.101839","url":null,"abstract":"<div><p>An adaptive method for parabolic partial differential equations that combines sparse wavelet expansions in time with adaptive low-rank approximations in the spatial variables is constructed and analyzed. The method is shown to converge and satisfy similar complexity bounds as existing adaptive low-rank methods for elliptic problems, establishing its suitability for parabolic problems on high-dimensional spatial domains. The construction also yields computable rigorous a posteriori error bounds for such problems. The results are illustrated by numerical experiments.</p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0885064X24000165/pdfft?md5=4d8d034eef881c11a8710e5ae9111cdb&pid=1-s2.0-S0885064X24000165-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139737552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Asymptotic analysis in multivariate worst case approximation with Gaussian kernels","authors":"A.A. Khartov , I.A. Limar","doi":"10.1016/j.jco.2024.101838","DOIUrl":"https://doi.org/10.1016/j.jco.2024.101838","url":null,"abstract":"<div><p>We consider a problem of approximation of <em>d</em>-variate functions defined on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> which belong to the Hilbert space with tensor product-type reproducing Gaussian kernel with constant shape parameter. Within worst case setting, we investigate the growth of the information complexity as <span><math><mi>d</mi><mo>→</mo><mo>∞</mo></math></span>. The asymptotics are obtained for the case of fixed error threshold and for the case when it goes to zero as <span><math><mi>d</mi><mo>→</mo><mo>∞</mo></math></span>.</p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139714084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Thomas Jahn, Tino Ullrich and Felix Voigtlaender are the Winners of the 2023 Best Paper Award of the Journal of Complexity","authors":"Erich Novak","doi":"10.1016/j.jco.2024.101834","DOIUrl":"10.1016/j.jco.2024.101834","url":null,"abstract":"","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0885064X24000116/pdfft?md5=1582996b1025acb2a96c8e9b4945e0ef&pid=1-s2.0-S0885064X24000116-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139647728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tamed-adaptive Euler-Maruyama approximation for SDEs with superlinearly growing and piecewise continuous drift, superlinearly growing and locally Hölder continuous diffusion","authors":"Minh-Thang Do , Hoang-Long Ngo , Nhat-An Pho","doi":"10.1016/j.jco.2024.101833","DOIUrl":"10.1016/j.jco.2024.101833","url":null,"abstract":"<div><p><span>In this paper, we consider stochastic differential equations<span> whose drift coefficient is superlinearly growing and piecewise continuous, and whose diffusion coefficient is superlinearly growing and locally Hölder continuous. We first prove the existence and uniqueness of solution to such stochastic differential equations and then propose a tamed-adaptive Euler-Maruyama approximation scheme. We study the rate of convergence in </span></span><span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span><span>-norm of the scheme in both finite and infinite time intervals.</span></p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139508603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Online regularized learning algorithm for functional data","authors":"Yuan Mao, Zheng-Chu Guo","doi":"10.1016/j.jco.2024.101825","DOIUrl":"10.1016/j.jco.2024.101825","url":null,"abstract":"<div><p>In recent years, functional linear models have attracted growing attention in statistics<span> and machine learning for recovering the slope function or its functional predictor. This paper considers online regularized learning algorithm for functional linear models in a reproducing kernel Hilbert space<span>. It provides convergence analysis of excess prediction error and estimation error with polynomially decaying step-size and constant step-size, respectively. Fast convergence rates can be derived via a capacity dependent analysis. Introducing an explicit regularization term extends the saturation boundary of unregularized online learning algorithms with polynomially decaying step-size and achieves fast convergence rates of estimation error without capacity assumption. In contrast, the latter remains an open problem for the unregularized online learning algorithm with decaying step-size. This paper also demonstrates competitive convergence rates of both prediction error and estimation error with constant step-size compared to existing literature.</span></span></p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139411895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}