{"title":"Intractability results for integration in tensor product spaces","authors":"Erich Novak , Friedrich Pillichshammer","doi":"10.1016/j.jco.2024.101901","DOIUrl":null,"url":null,"abstract":"<div><div>We prove lower bounds on the worst-case error of numerical integration in tensor product spaces. The information complexity is the minimal number <em>N</em> of function evaluations that is necessary such that the <em>N</em>-th minimal error is less than a factor <em>ε</em> times the initial error, i.e., the error for <span><math><mi>N</mi><mo>=</mo><mn>0</mn></math></span>, where <em>ε</em> belongs to <span><math><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>. We are interested to which extent the information complexity depends on the number <em>d</em> of variables of the integrands. If the information complexity grows exponentially fast in <em>d</em>, then the integration problem is said to suffer from the curse of dimensionality.</div><div>Under the assumption of the existence of a worst-case function for the uni-variate problem, we present two methods for providing lower bounds on the information complexity. The first method is based on a suitable decomposition of the worst-case function and can be seen as a generalization of the method of decomposable reproducing kernels. The second method, although only applicable for positive quadrature rules, does not require a suitable decomposition of the worst-case function. Rather, it is based on a spline approximation of the worst-case function and can be used for analytic functions. Several applications of both methods are presented.</div></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"86 ","pages":"Article 101901"},"PeriodicalIF":1.8000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complexity","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X24000785","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We prove lower bounds on the worst-case error of numerical integration in tensor product spaces. The information complexity is the minimal number N of function evaluations that is necessary such that the N-th minimal error is less than a factor ε times the initial error, i.e., the error for , where ε belongs to . We are interested to which extent the information complexity depends on the number d of variables of the integrands. If the information complexity grows exponentially fast in d, then the integration problem is said to suffer from the curse of dimensionality.
Under the assumption of the existence of a worst-case function for the uni-variate problem, we present two methods for providing lower bounds on the information complexity. The first method is based on a suitable decomposition of the worst-case function and can be seen as a generalization of the method of decomposable reproducing kernels. The second method, although only applicable for positive quadrature rules, does not require a suitable decomposition of the worst-case function. Rather, it is based on a spline approximation of the worst-case function and can be used for analytic functions. Several applications of both methods are presented.
期刊介绍:
The multidisciplinary Journal of Complexity publishes original research papers that contain substantial mathematical results on complexity as broadly conceived. Outstanding review papers will also be published. In the area of computational complexity, the focus is on complexity over the reals, with the emphasis on lower bounds and optimal algorithms. The Journal of Complexity also publishes articles that provide major new algorithms or make important progress on upper bounds. Other models of computation, such as the Turing machine model, are also of interest. Computational complexity results in a wide variety of areas are solicited.
Areas Include:
• Approximation theory
• Biomedical computing
• Compressed computing and sensing
• Computational finance
• Computational number theory
• Computational stochastics
• Control theory
• Cryptography
• Design of experiments
• Differential equations
• Discrete problems
• Distributed and parallel computation
• High and infinite-dimensional problems
• Information-based complexity
• Inverse and ill-posed problems
• Machine learning
• Markov chain Monte Carlo
• Monte Carlo and quasi-Monte Carlo
• Multivariate integration and approximation
• Noisy data
• Nonlinear and algebraic equations
• Numerical analysis
• Operator equations
• Optimization
• Quantum computing
• Scientific computation
• Tractability of multivariate problems
• Vision and image understanding.