{"title":"Kernel multigrid on manifolds","authors":"Thomas Hangelbroek , Christian Rieger","doi":"10.1016/j.jco.2024.101900","DOIUrl":null,"url":null,"abstract":"<div><div>Kernel methods for solving partial differential equations work coordinate-free on the surface and yield high approximation rates for smooth solutions. Localized Lagrange bases have proven to alleviate the computational complexity of usual kernel methods for data fitting problems, but the efficient numerical solution of the ill-conditioned linear systems of equations arising from kernel-based Galerkin solutions to PDEs is a challenging problem which has not been addressed in the literature so far. In this article we apply the framework of the geometric multigrid method with a <span><math><mi>τ</mi><mo>≥</mo><mn>2</mn></math></span>-cycle to scattered, quasi-uniform point clouds on the surface. We show that the resulting solver can be accelerated by using the Lagrange function decay and obtain satisfying convergence rates by a rigorous analysis. In particular, we show that the computational cost of the linear solver scales log-linear in the degrees of freedom.</div></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"86 ","pages":"Article 101900"},"PeriodicalIF":1.8000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complexity","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X24000773","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Kernel methods for solving partial differential equations work coordinate-free on the surface and yield high approximation rates for smooth solutions. Localized Lagrange bases have proven to alleviate the computational complexity of usual kernel methods for data fitting problems, but the efficient numerical solution of the ill-conditioned linear systems of equations arising from kernel-based Galerkin solutions to PDEs is a challenging problem which has not been addressed in the literature so far. In this article we apply the framework of the geometric multigrid method with a -cycle to scattered, quasi-uniform point clouds on the surface. We show that the resulting solver can be accelerated by using the Lagrange function decay and obtain satisfying convergence rates by a rigorous analysis. In particular, we show that the computational cost of the linear solver scales log-linear in the degrees of freedom.
期刊介绍:
The multidisciplinary Journal of Complexity publishes original research papers that contain substantial mathematical results on complexity as broadly conceived. Outstanding review papers will also be published. In the area of computational complexity, the focus is on complexity over the reals, with the emphasis on lower bounds and optimal algorithms. The Journal of Complexity also publishes articles that provide major new algorithms or make important progress on upper bounds. Other models of computation, such as the Turing machine model, are also of interest. Computational complexity results in a wide variety of areas are solicited.
Areas Include:
• Approximation theory
• Biomedical computing
• Compressed computing and sensing
• Computational finance
• Computational number theory
• Computational stochastics
• Control theory
• Cryptography
• Design of experiments
• Differential equations
• Discrete problems
• Distributed and parallel computation
• High and infinite-dimensional problems
• Information-based complexity
• Inverse and ill-posed problems
• Machine learning
• Markov chain Monte Carlo
• Monte Carlo and quasi-Monte Carlo
• Multivariate integration and approximation
• Noisy data
• Nonlinear and algebraic equations
• Numerical analysis
• Operator equations
• Optimization
• Quantum computing
• Scientific computation
• Tractability of multivariate problems
• Vision and image understanding.