分离密码的组合构造

IF 1.8 2区 数学 Q1 MATHEMATICS
Marcel Fernández , John Livieratos , Sebastià Martín
{"title":"分离密码的组合构造","authors":"Marcel Fernández ,&nbsp;John Livieratos ,&nbsp;Sebastià Martín","doi":"10.1016/j.jco.2024.101906","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents an algorithmic approach to the construction of separating codes. In the first part of the work, the Lovász Local Lemma is used to obtain a lower bound on the code rate. This lower bound matches the previously best-known lower bound. In the second part, it is shown how the technique used in proving the lower bound leads to an algorithm that outputs an instance of a separating code. Moreover, the implications of the algorithm regarding computational complexity are considered. The discussion ends by presenting explicit separating codes with polynomial computational complexity in the length of the code, with rate that improves previously known constructions.</div></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"86 ","pages":"Article 101906"},"PeriodicalIF":1.8000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combinatorial constructions of separating codes\",\"authors\":\"Marcel Fernández ,&nbsp;John Livieratos ,&nbsp;Sebastià Martín\",\"doi\":\"10.1016/j.jco.2024.101906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents an algorithmic approach to the construction of separating codes. In the first part of the work, the Lovász Local Lemma is used to obtain a lower bound on the code rate. This lower bound matches the previously best-known lower bound. In the second part, it is shown how the technique used in proving the lower bound leads to an algorithm that outputs an instance of a separating code. Moreover, the implications of the algorithm regarding computational complexity are considered. The discussion ends by presenting explicit separating codes with polynomial computational complexity in the length of the code, with rate that improves previously known constructions.</div></div>\",\"PeriodicalId\":50227,\"journal\":{\"name\":\"Journal of Complexity\",\"volume\":\"86 \",\"pages\":\"Article 101906\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Complexity\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0885064X24000839\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complexity","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X24000839","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种构建分离码的算法方法。在工作的第一部分,利用 Lovász Local Lemma 获得了码率下限。该下限与之前最著名的下限相吻合。第二部分展示了证明下限时使用的技术如何导致一种算法输出分离代码实例。此外,还考虑了该算法对计算复杂性的影响。讨论的最后,提出了计算复杂度与代码长度成多项式关系的显式分离代码,其速率改进了之前已知的构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combinatorial constructions of separating codes
This paper presents an algorithmic approach to the construction of separating codes. In the first part of the work, the Lovász Local Lemma is used to obtain a lower bound on the code rate. This lower bound matches the previously best-known lower bound. In the second part, it is shown how the technique used in proving the lower bound leads to an algorithm that outputs an instance of a separating code. Moreover, the implications of the algorithm regarding computational complexity are considered. The discussion ends by presenting explicit separating codes with polynomial computational complexity in the length of the code, with rate that improves previously known constructions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Complexity
Journal of Complexity 工程技术-计算机:理论方法
CiteScore
3.10
自引率
17.60%
发文量
57
审稿时长
>12 weeks
期刊介绍: The multidisciplinary Journal of Complexity publishes original research papers that contain substantial mathematical results on complexity as broadly conceived. Outstanding review papers will also be published. In the area of computational complexity, the focus is on complexity over the reals, with the emphasis on lower bounds and optimal algorithms. The Journal of Complexity also publishes articles that provide major new algorithms or make important progress on upper bounds. Other models of computation, such as the Turing machine model, are also of interest. Computational complexity results in a wide variety of areas are solicited. Areas Include: • Approximation theory • Biomedical computing • Compressed computing and sensing • Computational finance • Computational number theory • Computational stochastics • Control theory • Cryptography • Design of experiments • Differential equations • Discrete problems • Distributed and parallel computation • High and infinite-dimensional problems • Information-based complexity • Inverse and ill-posed problems • Machine learning • Markov chain Monte Carlo • Monte Carlo and quasi-Monte Carlo • Multivariate integration and approximation • Noisy data • Nonlinear and algebraic equations • Numerical analysis • Operator equations • Optimization • Quantum computing • Scientific computation • Tractability of multivariate problems • Vision and image understanding.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信