{"title":"Space-filling designs on Riemannian manifolds","authors":"Mingyao Ai , Yunfan Yang , Xiangshun Kong","doi":"10.1016/j.jco.2024.101899","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes a new approach to generating space-filling designs over Riemannian manifolds by using a Hilbert curve. Different from ordinary Euclidean spaces, a novel transformation is constructed to link the uniform distribution over a Riemannian manifold and that over its parameter space. Using this transformation, the uniformity of the design points in the sense of Riemannian volume measure can be guaranteed by the intrinsic measure preserving property of the Hilbert curve. It is proved that these generated designs are not only asymptotically optimal under minimax and maximin distance criteria, but also perform well in minimizing the Wasserstein distance from the target distribution and controlling the estimation error in numerical integration. Furthermore, an efficient algorithm is developed for numerical generation of these space-filling designs. The advantages of the new approach are verified through numerical simulations.</div></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"86 ","pages":"Article 101899"},"PeriodicalIF":1.8000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complexity","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X24000761","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a new approach to generating space-filling designs over Riemannian manifolds by using a Hilbert curve. Different from ordinary Euclidean spaces, a novel transformation is constructed to link the uniform distribution over a Riemannian manifold and that over its parameter space. Using this transformation, the uniformity of the design points in the sense of Riemannian volume measure can be guaranteed by the intrinsic measure preserving property of the Hilbert curve. It is proved that these generated designs are not only asymptotically optimal under minimax and maximin distance criteria, but also perform well in minimizing the Wasserstein distance from the target distribution and controlling the estimation error in numerical integration. Furthermore, an efficient algorithm is developed for numerical generation of these space-filling designs. The advantages of the new approach are verified through numerical simulations.
期刊介绍:
The multidisciplinary Journal of Complexity publishes original research papers that contain substantial mathematical results on complexity as broadly conceived. Outstanding review papers will also be published. In the area of computational complexity, the focus is on complexity over the reals, with the emphasis on lower bounds and optimal algorithms. The Journal of Complexity also publishes articles that provide major new algorithms or make important progress on upper bounds. Other models of computation, such as the Turing machine model, are also of interest. Computational complexity results in a wide variety of areas are solicited.
Areas Include:
• Approximation theory
• Biomedical computing
• Compressed computing and sensing
• Computational finance
• Computational number theory
• Computational stochastics
• Control theory
• Cryptography
• Design of experiments
• Differential equations
• Discrete problems
• Distributed and parallel computation
• High and infinite-dimensional problems
• Information-based complexity
• Inverse and ill-posed problems
• Machine learning
• Markov chain Monte Carlo
• Monte Carlo and quasi-Monte Carlo
• Multivariate integration and approximation
• Noisy data
• Nonlinear and algebraic equations
• Numerical analysis
• Operator equations
• Optimization
• Quantum computing
• Scientific computation
• Tractability of multivariate problems
• Vision and image understanding.