{"title":"求解有内存和无内存非线性方程的高效参数迭代方案","authors":"Raziyeh Erfanifar, Masoud Hajarian","doi":"10.1016/j.jco.2024.101896","DOIUrl":null,"url":null,"abstract":"<div><p>Many practical problems, such as the Malthusian population growth model, eigenvalue computations for matrices, and solving the Van der Waals' ideal gas equation, inherently involve nonlinearities. This paper initially introduces a two-parameter iterative scheme with a convergence order of two. Building on this, a three-parameter scheme with a convergence order of four is proposed. Then we extend these schemes into higher-order schemes with memory using Newton's interpolation, achieving an upper bound for the efficiency index of <span><math><msup><mrow><mn>7.88748</mn></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></msup><mo>≈</mo><mn>1.99057</mn></math></span>. Finally, we validate the new schemes by solving various numerical and practical examples, demonstrating their superior efficiency in terms of computational cost, CPU time, and accuracy compared to existing methods.</p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0885064X24000736/pdfft?md5=6dc221bf6c1e2ffc085c2b830768b4e4&pid=1-s2.0-S0885064X24000736-main.pdf","citationCount":"0","resultStr":"{\"title\":\"High-efficiency parametric iterative schemes for solving nonlinear equations with and without memory\",\"authors\":\"Raziyeh Erfanifar, Masoud Hajarian\",\"doi\":\"10.1016/j.jco.2024.101896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Many practical problems, such as the Malthusian population growth model, eigenvalue computations for matrices, and solving the Van der Waals' ideal gas equation, inherently involve nonlinearities. This paper initially introduces a two-parameter iterative scheme with a convergence order of two. Building on this, a three-parameter scheme with a convergence order of four is proposed. Then we extend these schemes into higher-order schemes with memory using Newton's interpolation, achieving an upper bound for the efficiency index of <span><math><msup><mrow><mn>7.88748</mn></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></msup><mo>≈</mo><mn>1.99057</mn></math></span>. Finally, we validate the new schemes by solving various numerical and practical examples, demonstrating their superior efficiency in terms of computational cost, CPU time, and accuracy compared to existing methods.</p></div>\",\"PeriodicalId\":50227,\"journal\":{\"name\":\"Journal of Complexity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0885064X24000736/pdfft?md5=6dc221bf6c1e2ffc085c2b830768b4e4&pid=1-s2.0-S0885064X24000736-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Complexity\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0885064X24000736\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complexity","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X24000736","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
High-efficiency parametric iterative schemes for solving nonlinear equations with and without memory
Many practical problems, such as the Malthusian population growth model, eigenvalue computations for matrices, and solving the Van der Waals' ideal gas equation, inherently involve nonlinearities. This paper initially introduces a two-parameter iterative scheme with a convergence order of two. Building on this, a three-parameter scheme with a convergence order of four is proposed. Then we extend these schemes into higher-order schemes with memory using Newton's interpolation, achieving an upper bound for the efficiency index of . Finally, we validate the new schemes by solving various numerical and practical examples, demonstrating their superior efficiency in terms of computational cost, CPU time, and accuracy compared to existing methods.
期刊介绍:
The multidisciplinary Journal of Complexity publishes original research papers that contain substantial mathematical results on complexity as broadly conceived. Outstanding review papers will also be published. In the area of computational complexity, the focus is on complexity over the reals, with the emphasis on lower bounds and optimal algorithms. The Journal of Complexity also publishes articles that provide major new algorithms or make important progress on upper bounds. Other models of computation, such as the Turing machine model, are also of interest. Computational complexity results in a wide variety of areas are solicited.
Areas Include:
• Approximation theory
• Biomedical computing
• Compressed computing and sensing
• Computational finance
• Computational number theory
• Computational stochastics
• Control theory
• Cryptography
• Design of experiments
• Differential equations
• Discrete problems
• Distributed and parallel computation
• High and infinite-dimensional problems
• Information-based complexity
• Inverse and ill-posed problems
• Machine learning
• Markov chain Monte Carlo
• Monte Carlo and quasi-Monte Carlo
• Multivariate integration and approximation
• Noisy data
• Nonlinear and algebraic equations
• Numerical analysis
• Operator equations
• Optimization
• Quantum computing
• Scientific computation
• Tractability of multivariate problems
• Vision and image understanding.