Journal of Complexity最新文献

筛选
英文 中文
On a class of linear regression methods 关于一类线性回归方法
IF 1.7 2区 数学
Journal of Complexity Pub Date : 2024-01-09 DOI: 10.1016/j.jco.2024.101826
Ying-Ao Wang , Qin Huang , Zhigang Yao , Ye Zhang
{"title":"On a class of linear regression methods","authors":"Ying-Ao Wang ,&nbsp;Qin Huang ,&nbsp;Zhigang Yao ,&nbsp;Ye Zhang","doi":"10.1016/j.jco.2024.101826","DOIUrl":"10.1016/j.jco.2024.101826","url":null,"abstract":"<div><p>In this paper, a unified study is presented for the design and analysis of a broad class of linear regression methods. The proposed general framework includes the conventional linear regression methods (such as the least squares regression and the Ridge regression) and some new regression methods (e.g. the Landweber regression and Showalter regression), which have recently been introduced in the fields of optimization and inverse problems. The strong consistency, the reduced mean squared error, the asymptotic Gaussian property, and the best worst case error of this class of linear regression methods are investigated. Various numerical experiments are performed to demonstrate the consistency and efficiency of the proposed class of methods for linear regression.</p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139411985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonlinear Tikhonov regularization in Hilbert scales for inverse learning 用于逆向学习的希尔伯特尺度非线性提霍诺夫正则化
IF 1.7 2区 数学
Journal of Complexity Pub Date : 2024-01-06 DOI: 10.1016/j.jco.2024.101824
Abhishake Rastogi
{"title":"Nonlinear Tikhonov regularization in Hilbert scales for inverse learning","authors":"Abhishake Rastogi","doi":"10.1016/j.jco.2024.101824","DOIUrl":"10.1016/j.jco.2024.101824","url":null,"abstract":"<div><p>In this paper, we study Tikhonov regularization scheme in Hilbert scales for a nonlinear statistical inverse problem with general noise. The regularizing norm in this scheme is stronger than the norm in the Hilbert space. We focus on developing a theoretical analysis for this scheme based on conditional stability estimates. We utilize the concept of the distance function to establish high probability estimates of the direct and reconstruction errors in the Reproducing Kernel Hilbert space setting. Furthermore, explicit rates of convergence in terms of sample size are established for the oversmoothing case and the regular case over the regularity class defined through an appropriate source condition. Our results improve upon and generalize previous results obtained in related settings.</p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0885064X24000013/pdfft?md5=1a65eb323b09b712bcf07de5eb47b8eb&pid=1-s2.0-S0885064X24000013-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139375520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Randomized complexity of parametric integration and the role of adaption II. Sobolev spaces 参数积分的随机复杂性和适应的作用 II.索波列夫空间
IF 1.7 2区 数学
Journal of Complexity Pub Date : 2024-01-02 DOI: 10.1016/j.jco.2023.101823
Stefan Heinrich
{"title":"Randomized complexity of parametric integration and the role of adaption II. Sobolev spaces","authors":"Stefan Heinrich","doi":"10.1016/j.jco.2023.101823","DOIUrl":"10.1016/j.jco.2023.101823","url":null,"abstract":"<div><p><span>We study the complexity of randomized computation of integrals depending on a parameter, with integrands<span> from Sobolev spaces. That is, for </span></span><span><math><mi>r</mi><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><mi>N</mi></math></span>, <span><math><mn>1</mn><mo>≤</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>≤</mo><mo>∞</mo></math></span>, <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup></math></span>, and <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><msub><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msup></math></span> we are given <span><math><mi>f</mi><mo>∈</mo><msubsup><mrow><mi>W</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>r</mi></mrow></msubsup><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>×</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> and we seek to approximate<span><span><span><math><mo>(</mo><mi>S</mi><mi>f</mi><mo>)</mo><mo>(</mo><mi>s</mi><mo>)</mo><mo>=</mo><munder><mo>∫</mo><mrow><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></munder><mi>f</mi><mo>(</mo><mi>s</mi><mo>,</mo><mi>t</mi><mo>)</mo><mi>d</mi><mi>t</mi><mspace></mspace><mo>(</mo><mi>s</mi><mo>∈</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>,</mo></math></span></span></span> with error measured in the <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></math></span>-norm. Information is standard, that is, function values of <em>f</em>. Our results extend previous work of Heinrich and Sindambiwe (1999) <span>[10]</span> for <span><math><mi>p</mi><mo>=</mo><mi>q</mi><mo>=</mo><mo>∞</mo></math></span> and Wiegand (2006) <span>[15]</span> for <span><math><mn>1</mn><mo>≤</mo><mi>p</mi><mo>=</mo><mi>q</mi><mo>&lt;</mo><mo>∞</mo></math></span>. Wiegand's analysis was carried out under the assumption that <span><math><msubsup><mrow><mi>W</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>r</mi></mrow></msubsup><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>×</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> is continuously embedded in <span><math><mi>C</mi><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>×</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span><span> (embedding condition). We also study the case that the embedding condition does not hold. For this purpose a new ingredient is developed – a stochastic discretization","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139094532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sharp lower error bounds for strong approximation of SDEs with piecewise Lipschitz continuous drift coefficient 具有片状 Lipschitz 连续漂移系数的 SDE 强逼近的尖锐误差下限
IF 1.7 2区 数学
Journal of Complexity Pub Date : 2024-01-02 DOI: 10.1016/j.jco.2023.101822
Simon Ellinger
{"title":"Sharp lower error bounds for strong approximation of SDEs with piecewise Lipschitz continuous drift coefficient","authors":"Simon Ellinger","doi":"10.1016/j.jco.2023.101822","DOIUrl":"10.1016/j.jco.2023.101822","url":null,"abstract":"<div><p><span>We study pathwise approximation of strong solutions of scalar stochastic differential equations (SDEs) at a single time in the presence of discontinuities of the drift coefficient. Recently, it has been shown by Müller-Gronbach and Yaroslavtseva (2022) that for all </span><span><math><mi>p</mi><mo>∈</mo><mo>[</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span> a transformed Milstein-type scheme reaches an <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span><span><span>-error rate of at least 3/4 when the drift coefficient is a piecewise Lipschitz-continuous function with a piecewise Lipschitz-continuous derivative and the diffusion coefficient is constant. It has been proven by Müller-Gronbach and Yaroslavtseva (2023) that this rate 3/4 is optimal if one additionally assumes that the drift coefficient is bounded, increasing and has a point of discontinuity. While </span>boundedness and monotonicity of the drift coefficient are crucial for the proof of the matching lower bound from Müller-Gronbach and Yaroslavtseva (2023), we show that both conditions can be dropped. For the proof we apply a transformation technique which was so far only used to obtain upper bounds.</span></p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139094366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Complexity for a class of elliptic ordinary integro-differential equations 一类椭圆常积分微分方程的复杂性
IF 1.7 2区 数学
Journal of Complexity Pub Date : 2023-12-27 DOI: 10.1016/j.jco.2023.101820
A.G. Werschulz
{"title":"Complexity for a class of elliptic ordinary integro-differential equations","authors":"A.G. Werschulz","doi":"10.1016/j.jco.2023.101820","DOIUrl":"10.1016/j.jco.2023.101820","url":null,"abstract":"<div><p>Consider the variational form of the ordinary integro-differential equation (OIDE)<span><span><span><math><mo>−</mo><msup><mrow><mi>u</mi></mrow><mrow><mo>″</mo></mrow></msup><mo>+</mo><mi>u</mi><mo>+</mo><munderover><mo>∫</mo><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></munderover><mi>q</mi><mo>(</mo><mo>⋅</mo><mo>,</mo><mi>y</mi><mo>)</mo><mi>u</mi><mo>(</mo><mi>y</mi><mo>)</mo><mrow><mtext>dy</mtext></mrow><mo>=</mo><mi>f</mi></math></span></span></span> on the unit interval <em>I</em><span>, subject to homogeneous Neumann boundary conditions. Here, </span><em>f</em> and <em>q</em> respectively belong to the unit ball of <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>(</mo><mi>I</mi><mo>)</mo></math></span> and the ball of radius <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> of <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup><mo>(</mo><msup><mrow><mi>I</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span>, where <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>. For <span><math><mi>ε</mi><mo>&gt;</mo><mn>0</mn></math></span>, we want to compute <em>ε</em>-approximations for this problem, measuring error in the <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>I</mi><mo>)</mo></math></span> sense in the worst case setting. Assuming that standard information is admissible, we find that the <em>n</em>th minimal error is <span><math><mi>Θ</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mi>min</mi><mo>⁡</mo><mo>{</mo><mi>r</mi><mo>,</mo><mi>s</mi><mo>/</mo><mn>2</mn><mo>}</mo></mrow></msup><mo>)</mo></math></span>, so that the information <em>ε</em>-complexity is <span><math><mi>Θ</mi><mo>(</mo><msup><mrow><mi>ε</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mi>min</mi><mo>⁡</mo><mo>{</mo><mi>r</mi><mo>,</mo><mi>s</mi><mo>/</mo><mn>2</mn><mo>}</mo></mrow></msup><mo>)</mo></math></span><span>; moreover, finite element methods of degree </span><span><math><mi>max</mi><mo>⁡</mo><mo>{</mo><mi>r</mi><mo>,</mo><mi>s</mi><mo>}</mo></math></span><span> are minimal-error algorithms. We use a Picard method to approximate the solution of the resulting linear systems, since Gaussian elimination will be too expensive. We find that the total </span><em>ε</em>-complexity of the problem is at least <span><math><mi>Ω</mi><mo>(</mo><msup><mrow><mi>ε</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mi>min</mi><mo>⁡</mo><mo>{</mo><mi>r</mi><mo>,</mo><mi>s</mi><mo>/</mo><mn>2</mn><mo>}</mo></mrow></msup><mo>)</mo></math></span> and at most <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>ε</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mi>min</mi><mo>⁡</mo><mo>{</mo><mi>r</mi><mo>,</mo><mi>s</mi><mo>/</mo><mn>2</mn><mo>}</mo></mrow></msup><mi>ln</mi><mo>⁡</mo><msup><mrow><mi>ε</mi></mrow><mrow><mo>−</mo><mn>1</mn></m","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139071062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Randomized complexity of parametric integration and the role of adaption I. Finite dimensional case 参数积分的随机复杂性和适应的作用 I. 有限维情况
IF 1.7 2区 数学
Journal of Complexity Pub Date : 2023-12-27 DOI: 10.1016/j.jco.2023.101821
Stefan Heinrich
{"title":"Randomized complexity of parametric integration and the role of adaption I. Finite dimensional case","authors":"Stefan Heinrich","doi":"10.1016/j.jco.2023.101821","DOIUrl":"10.1016/j.jco.2023.101821","url":null,"abstract":"<div><p>We study the randomized <em>n</em><span>-th minimal errors (and hence the complexity) of vector valued mean computation, which is the discrete version of parametric<span> integration. The results of the present paper form the basis for the complexity analysis of parametric integration in Sobolev spaces, which will be presented in Part 2. Altogether this extends previous results of Heinrich and Sindambiwe (1999) </span></span><span>[12]</span> and Wiegand (2006) <span>[27]</span>. Moreover, a basic problem of Information-Based Complexity on the power of adaption for linear problems in the randomized setting is solved.</p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139071056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the information complexity for integration in subspaces of the Wiener algebra 论维纳代数子空间积分的信息复杂度
IF 1.7 2区 数学
Journal of Complexity Pub Date : 2023-12-27 DOI: 10.1016/j.jco.2023.101819
Liang Chen, Haixin Jiang
{"title":"On the information complexity for integration in subspaces of the Wiener algebra","authors":"Liang Chen,&nbsp;Haixin Jiang","doi":"10.1016/j.jco.2023.101819","DOIUrl":"10.1016/j.jco.2023.101819","url":null,"abstract":"<div><p>Recently, Goda proved the polynomial tractability of integration on the following function subspace of the Wiener algebra<span><span><span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>:</mo><mo>=</mo><mrow><mo>{</mo><mi>f</mi><mo>∈</mo><mi>C</mi><mo>(</mo><msup><mrow><mi>T</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo><mo>|</mo><msub><mrow><mo>‖</mo><mi>f</mi><mo>‖</mo></mrow><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>d</mi></mrow></msub></mrow></msub></mrow><mspace></mspace><mspace></mspace><mspace></mspace><mo>:</mo><mo>=</mo><munder><mo>∑</mo><mrow><mi>k</mi><mo>∈</mo><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup></mrow></munder><mo>|</mo><mover><mrow><mi>f</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>(</mo><mi>k</mi><mo>)</mo><mo>|</mo><mi>max</mi><mo>⁡</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><munder><mi>min</mi><mrow><mi>j</mi><mo>∈</mo><mi>supp</mi><mo>(</mo><mi>k</mi><mo>)</mo></mrow></munder><mo>⁡</mo><mi>log</mi><mo>⁡</mo><mo>|</mo><msub><mrow><mi>k</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>|</mo><mo>)</mo></mrow><mo>&lt;</mo><mo>∞</mo><mo>}</mo><mo>,</mo></math></span></span></span> where <span><math><mi>T</mi><mo>:</mo><mo>=</mo><mi>R</mi><mo>/</mo><mi>Z</mi><mo>=</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>, <span><math><mover><mrow><mi>f</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>(</mo><mi>k</mi><mo>)</mo></math></span> is the <strong><em>k</em></strong><span>-th Fourier coefficient of </span><em>f</em> and <span><math><mi>supp</mi><mo>(</mo><mi>k</mi><mo>)</mo><mo>:</mo><mo>=</mo><mo>{</mo><mi>j</mi><mo>∈</mo><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>d</mi><mo>}</mo><mo>|</mo><msub><mrow><mi>k</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>≠</mo><mn>0</mn><mo>}</mo></math></span>. Goda raised an open question as to whether the upper bound of the information complexity for integration in <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span><span> can be improved. In this note, we give a positive answer. By establishing a Monte Carlo sampling method and using Rademacher complexity to estimate the uniform convergence rate, the upper bound can be improved to </span><span><math><mi>Θ</mi><mo>(</mo><mi>d</mi><mo>/</mo><msup><mrow><mi>ϵ</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></math></span>, where <span><math><mi>ϵ</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn><mo>)</mo></math></span> is the target accuracy. We also use the same technique to estimate the information complexity for a Hölder continuous subspace of Wiener algebra. Compared to the previous upper bound <span><math><mi>Θ</mi><mo>(</mo><mi>max</mi><mo>⁡</mo><mo>(</mo><mfrac><mrow><msup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><msup><mrow><mi>ϵ</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mo>,</mo><mfrac><mrow><msup><mrow><mi>d</mi></mrow><mrow><mn>1</mn><mo>/</mo><mi>q</mi></mrow></","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139071325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A duality approach to regularized learning problems in Banach spaces 巴拿赫空间正则化学习问题的对偶方法
IF 1.7 2区 数学
Journal of Complexity Pub Date : 2023-12-15 DOI: 10.1016/j.jco.2023.101818
Raymond Cheng , Rui Wang , Yuesheng Xu
{"title":"A duality approach to regularized learning problems in Banach spaces","authors":"Raymond Cheng ,&nbsp;Rui Wang ,&nbsp;Yuesheng Xu","doi":"10.1016/j.jco.2023.101818","DOIUrl":"10.1016/j.jco.2023.101818","url":null,"abstract":"<div><p><span>Regularized learning problems in Banach spaces, which often minimize the sum of a data fidelity term in one Banach norm and a </span>regularization<span><span> term in another Banach norm, is challenging to solve. We construct a direct sum space based on the Banach spaces for the fidelity term and the regularization term, and recast the objective function as the norm of a quotient space of the direct sum space. We then express the original regularized problem as an optimization problem in the dual space of the direct sum space. It is to find the maximum of a linear function on a convex polytope, which may be solved by linear programming. A solution of the original problem is then obtained by using related </span>extremal properties of norming functionals from a solution of the dual problem. Numerical experiments demonstrate that the proposed duality approach is effective for solving the regularization learning problems.</span></p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138681684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal recovery and volume estimates 最佳恢复和容量估计
IF 1.7 2区 数学
Journal of Complexity Pub Date : 2023-12-01 DOI: 10.1016/j.jco.2023.101780
A. Kushpel
{"title":"Optimal recovery and volume estimates","authors":"A. Kushpel","doi":"10.1016/j.jco.2023.101780","DOIUrl":"https://doi.org/10.1016/j.jco.2023.101780","url":null,"abstract":"","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"54746253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The rate of convergence for sparse and low-rank quantile trace regression 稀疏和低秩分位数迹回归的收敛速度
IF 1.7 2区 数学
Journal of Complexity Pub Date : 2023-12-01 DOI: 10.1016/j.jco.2023.101778
Xiangyong Tan, Ling Peng, Peiwen Xiao, Qing Liu, Xiaohui Liu
{"title":"The rate of convergence for sparse and low-rank quantile trace regression","authors":"Xiangyong Tan, Ling Peng, Peiwen Xiao, Qing Liu, Xiaohui Liu","doi":"10.1016/j.jco.2023.101778","DOIUrl":"https://doi.org/10.1016/j.jco.2023.101778","url":null,"abstract":"","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"54746217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信