通过非凸正则化实现低阶矩阵参数的自适应胡贝尔痕量回归

IF 1.8 2区 数学 Q1 MATHEMATICS
Xiangyong Tan , Ling Peng , Heng Lian , Xiaohui Liu
{"title":"通过非凸正则化实现低阶矩阵参数的自适应胡贝尔痕量回归","authors":"Xiangyong Tan ,&nbsp;Ling Peng ,&nbsp;Heng Lian ,&nbsp;Xiaohui Liu","doi":"10.1016/j.jco.2024.101871","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider the adaptive Huber trace regression model with matrix covariates. A non-convex penalty function is employed to account for the low-rank structure of the unknown parameter. Under some mild conditions, we establish an upper bound for the statistical rate of convergence of the regularized matrix estimator. Theoretically, we can deal with heavy-tailed distributions with bounded <span><math><mo>(</mo><mn>1</mn><mo>+</mo><mi>δ</mi><mo>)</mo></math></span>-th moment for any <span><math><mi>δ</mi><mo>&gt;</mo><mn>0</mn></math></span>. Furthermore, we derive the effect of the adaptive parameter on the final estimator. Some simulations, as well as a real data example, are designed to show the finite sample performance of the proposed method.</p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"85 ","pages":"Article 101871"},"PeriodicalIF":1.8000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Huber trace regression with low-rank matrix parameter via nonconvex regularization\",\"authors\":\"Xiangyong Tan ,&nbsp;Ling Peng ,&nbsp;Heng Lian ,&nbsp;Xiaohui Liu\",\"doi\":\"10.1016/j.jco.2024.101871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we consider the adaptive Huber trace regression model with matrix covariates. A non-convex penalty function is employed to account for the low-rank structure of the unknown parameter. Under some mild conditions, we establish an upper bound for the statistical rate of convergence of the regularized matrix estimator. Theoretically, we can deal with heavy-tailed distributions with bounded <span><math><mo>(</mo><mn>1</mn><mo>+</mo><mi>δ</mi><mo>)</mo></math></span>-th moment for any <span><math><mi>δ</mi><mo>&gt;</mo><mn>0</mn></math></span>. Furthermore, we derive the effect of the adaptive parameter on the final estimator. Some simulations, as well as a real data example, are designed to show the finite sample performance of the proposed method.</p></div>\",\"PeriodicalId\":50227,\"journal\":{\"name\":\"Journal of Complexity\",\"volume\":\"85 \",\"pages\":\"Article 101871\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Complexity\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0885064X24000487\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complexity","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X24000487","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了具有矩阵协变量的自适应胡贝尔迹回归模型。为了考虑未知参数的低秩结构,我们采用了非凸惩罚函数。在一些温和的条件下,我们建立了正则化矩阵估计器的统计收敛率上限。从理论上讲,我们可以处理任意 δ>0 时具有有界 (1+δ)-th 矩的重尾分布。此外,我们还得出了自适应参数对最终估计器的影响。我们设计了一些模拟以及一个真实数据示例,以展示所提方法的有限样本性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Huber trace regression with low-rank matrix parameter via nonconvex regularization

In this paper, we consider the adaptive Huber trace regression model with matrix covariates. A non-convex penalty function is employed to account for the low-rank structure of the unknown parameter. Under some mild conditions, we establish an upper bound for the statistical rate of convergence of the regularized matrix estimator. Theoretically, we can deal with heavy-tailed distributions with bounded (1+δ)-th moment for any δ>0. Furthermore, we derive the effect of the adaptive parameter on the final estimator. Some simulations, as well as a real data example, are designed to show the finite sample performance of the proposed method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Complexity
Journal of Complexity 工程技术-计算机:理论方法
CiteScore
3.10
自引率
17.60%
发文量
57
审稿时长
>12 weeks
期刊介绍: The multidisciplinary Journal of Complexity publishes original research papers that contain substantial mathematical results on complexity as broadly conceived. Outstanding review papers will also be published. In the area of computational complexity, the focus is on complexity over the reals, with the emphasis on lower bounds and optimal algorithms. The Journal of Complexity also publishes articles that provide major new algorithms or make important progress on upper bounds. Other models of computation, such as the Turing machine model, are also of interest. Computational complexity results in a wide variety of areas are solicited. Areas Include: • Approximation theory • Biomedical computing • Compressed computing and sensing • Computational finance • Computational number theory • Computational stochastics • Control theory • Cryptography • Design of experiments • Differential equations • Discrete problems • Distributed and parallel computation • High and infinite-dimensional problems • Information-based complexity • Inverse and ill-posed problems • Machine learning • Markov chain Monte Carlo • Monte Carlo and quasi-Monte Carlo • Multivariate integration and approximation • Noisy data • Nonlinear and algebraic equations • Numerical analysis • Operator equations • Optimization • Quantum computing • Scientific computation • Tractability of multivariate problems • Vision and image understanding.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信