{"title":"Selected aspects of tractability analysis","authors":"Peter Kritzer","doi":"10.1016/j.jco.2024.101869","DOIUrl":null,"url":null,"abstract":"<div><p>We give an overview of certain aspects of tractability analysis of multivariate problems. This paper is not intended to give a complete account of the subject, but provides an insight into how the theory works for particular types of problems. We mainly focus on linear problems on Hilbert spaces, and mostly allow arbitrary linear information. In such cases, tractability analysis is closely linked to an analysis of the singular values of the operator under consideration. We also highlight the more recent developments regarding exponential and generalized tractability. The theoretical results are illustrated by several examples throughout the article.</p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"84 ","pages":"Article 101869"},"PeriodicalIF":1.8000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complexity","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X24000463","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We give an overview of certain aspects of tractability analysis of multivariate problems. This paper is not intended to give a complete account of the subject, but provides an insight into how the theory works for particular types of problems. We mainly focus on linear problems on Hilbert spaces, and mostly allow arbitrary linear information. In such cases, tractability analysis is closely linked to an analysis of the singular values of the operator under consideration. We also highlight the more recent developments regarding exponential and generalized tractability. The theoretical results are illustrated by several examples throughout the article.
期刊介绍:
The multidisciplinary Journal of Complexity publishes original research papers that contain substantial mathematical results on complexity as broadly conceived. Outstanding review papers will also be published. In the area of computational complexity, the focus is on complexity over the reals, with the emphasis on lower bounds and optimal algorithms. The Journal of Complexity also publishes articles that provide major new algorithms or make important progress on upper bounds. Other models of computation, such as the Turing machine model, are also of interest. Computational complexity results in a wide variety of areas are solicited.
Areas Include:
• Approximation theory
• Biomedical computing
• Compressed computing and sensing
• Computational finance
• Computational number theory
• Computational stochastics
• Control theory
• Cryptography
• Design of experiments
• Differential equations
• Discrete problems
• Distributed and parallel computation
• High and infinite-dimensional problems
• Information-based complexity
• Inverse and ill-posed problems
• Machine learning
• Markov chain Monte Carlo
• Monte Carlo and quasi-Monte Carlo
• Multivariate integration and approximation
• Noisy data
• Nonlinear and algebraic equations
• Numerical analysis
• Operator equations
• Optimization
• Quantum computing
• Scientific computation
• Tractability of multivariate problems
• Vision and image understanding.