{"title":"Interpolation by decomposable univariate polynomials","authors":"Joachim von zur Gathen , Guillermo Matera","doi":"10.1016/j.jco.2024.101885","DOIUrl":null,"url":null,"abstract":"<div><p>The usual univariate interpolation problem of finding a monic polynomial <em>f</em> of degree <em>n</em> that interpolates <em>n</em> given values is well understood. This paper studies a variant where <em>f</em> is required to be composite, say, a composition of two polynomials of degrees <em>d</em> and <em>e</em>, respectively, with <span><math><mi>d</mi><mi>e</mi><mo>=</mo><mi>n</mi></math></span>, and with <span><math><mi>d</mi><mo>+</mo><mi>e</mi><mo>−</mo><mn>1</mn></math></span> given values. Some special cases are easy to solve, and for the general case, we construct a homotopy between it and a special case. We compute a <em>geometric solution</em> of the algebraic curve presenting this homotopy, and this also provides an answer to the interpolation task. The computing time is polynomial in the geometric data, like the degree, of this curve. A consequence is that for almost all inputs, a decomposable interpolation polynomial exists.</p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"85 ","pages":"Article 101885"},"PeriodicalIF":1.8000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complexity","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X24000621","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The usual univariate interpolation problem of finding a monic polynomial f of degree n that interpolates n given values is well understood. This paper studies a variant where f is required to be composite, say, a composition of two polynomials of degrees d and e, respectively, with , and with given values. Some special cases are easy to solve, and for the general case, we construct a homotopy between it and a special case. We compute a geometric solution of the algebraic curve presenting this homotopy, and this also provides an answer to the interpolation task. The computing time is polynomial in the geometric data, like the degree, of this curve. A consequence is that for almost all inputs, a decomposable interpolation polynomial exists.
期刊介绍:
The multidisciplinary Journal of Complexity publishes original research papers that contain substantial mathematical results on complexity as broadly conceived. Outstanding review papers will also be published. In the area of computational complexity, the focus is on complexity over the reals, with the emphasis on lower bounds and optimal algorithms. The Journal of Complexity also publishes articles that provide major new algorithms or make important progress on upper bounds. Other models of computation, such as the Turing machine model, are also of interest. Computational complexity results in a wide variety of areas are solicited.
Areas Include:
• Approximation theory
• Biomedical computing
• Compressed computing and sensing
• Computational finance
• Computational number theory
• Computational stochastics
• Control theory
• Cryptography
• Design of experiments
• Differential equations
• Discrete problems
• Distributed and parallel computation
• High and infinite-dimensional problems
• Information-based complexity
• Inverse and ill-posed problems
• Machine learning
• Markov chain Monte Carlo
• Monte Carlo and quasi-Monte Carlo
• Multivariate integration and approximation
• Noisy data
• Nonlinear and algebraic equations
• Numerical analysis
• Operator equations
• Optimization
• Quantum computing
• Scientific computation
• Tractability of multivariate problems
• Vision and image understanding.