On the complexity of strong approximation of stochastic differential equations with a non-Lipschitz drift coefficient

IF 1.8 2区 数学 Q1 MATHEMATICS
Thomas Müller-Gronbach , Larisa Yaroslavtseva
{"title":"On the complexity of strong approximation of stochastic differential equations with a non-Lipschitz drift coefficient","authors":"Thomas Müller-Gronbach ,&nbsp;Larisa Yaroslavtseva","doi":"10.1016/j.jco.2024.101870","DOIUrl":null,"url":null,"abstract":"<div><p>We survey recent developments in the field of complexity of pathwise approximation in <em>p</em>-th mean of the solution of a stochastic differential equation at the final time based on finitely many evaluations of the driving Brownian motion. First, we briefly review the case of equations with globally Lipschitz continuous coefficients, for which an error rate of at least 1/2 in terms of the number of evaluations of the driving Brownian motion is always guaranteed by using the equidistant Euler-Maruyama scheme. Then we illustrate that giving up the global Lipschitz continuity of the coefficients may lead to a non-polynomial decay of the error for the Euler-Maruyama scheme or even to an arbitrary slow decay of the smallest possible error that can be achieved on the basis of finitely many evaluations of the driving Brownian motion. Finally, we turn to recent positive results for equations with a drift coefficient that is not globally Lipschitz continuous. Here we focus on scalar equations with a Lipschitz continuous diffusion coefficient and a drift coefficient that satisfies piecewise smoothness assumptions or has fractional Sobolev regularity and we present corresponding complexity results.</p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"85 ","pages":"Article 101870"},"PeriodicalIF":1.8000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0885064X24000475/pdfft?md5=1abf95a86603ccdc1b342109b28265f5&pid=1-s2.0-S0885064X24000475-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complexity","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X24000475","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We survey recent developments in the field of complexity of pathwise approximation in p-th mean of the solution of a stochastic differential equation at the final time based on finitely many evaluations of the driving Brownian motion. First, we briefly review the case of equations with globally Lipschitz continuous coefficients, for which an error rate of at least 1/2 in terms of the number of evaluations of the driving Brownian motion is always guaranteed by using the equidistant Euler-Maruyama scheme. Then we illustrate that giving up the global Lipschitz continuity of the coefficients may lead to a non-polynomial decay of the error for the Euler-Maruyama scheme or even to an arbitrary slow decay of the smallest possible error that can be achieved on the basis of finitely many evaluations of the driving Brownian motion. Finally, we turn to recent positive results for equations with a drift coefficient that is not globally Lipschitz continuous. Here we focus on scalar equations with a Lipschitz continuous diffusion coefficient and a drift coefficient that satisfies piecewise smoothness assumptions or has fractional Sobolev regularity and we present corresponding complexity results.

论具有非 Lipschitz 漂移系数的随机微分方程强逼近的复杂性
我们考察了基于对驱动布朗运动的有限次求值对随机微分方程的解进行 p 次均值路径逼近的复杂性领域的最新进展。首先,我们简要回顾了具有全局 Lipschitz 连续系数的方程的情况,对于这些方程,使用等距欧拉-马鲁山方案总能保证误差率至少为驱动布朗运动求值次数的 1/2 。然后我们说明,放弃系数的全局 Lipschitz 连续性可能会导致 Euler-Maruyama 方案误差的非多项式衰减,甚至导致基于驱动布朗运动的有限次求值所能达到的最小误差的任意缓慢衰减。最后,我们来谈谈最近关于漂移系数非全局利普齐兹连续的方程的积极结果。在此,我们重点讨论具有利普齐兹连续扩散系数和满足片断平稳性假设或具有分数索博列夫正则性的漂移系数的标量方程,并提出相应的复杂性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Complexity
Journal of Complexity 工程技术-计算机:理论方法
CiteScore
3.10
自引率
17.60%
发文量
57
审稿时长
>12 weeks
期刊介绍: The multidisciplinary Journal of Complexity publishes original research papers that contain substantial mathematical results on complexity as broadly conceived. Outstanding review papers will also be published. In the area of computational complexity, the focus is on complexity over the reals, with the emphasis on lower bounds and optimal algorithms. The Journal of Complexity also publishes articles that provide major new algorithms or make important progress on upper bounds. Other models of computation, such as the Turing machine model, are also of interest. Computational complexity results in a wide variety of areas are solicited. Areas Include: • Approximation theory • Biomedical computing • Compressed computing and sensing • Computational finance • Computational number theory • Computational stochastics • Control theory • Cryptography • Design of experiments • Differential equations • Discrete problems • Distributed and parallel computation • High and infinite-dimensional problems • Information-based complexity • Inverse and ill-posed problems • Machine learning • Markov chain Monte Carlo • Monte Carlo and quasi-Monte Carlo • Multivariate integration and approximation • Noisy data • Nonlinear and algebraic equations • Numerical analysis • Operator equations • Optimization • Quantum computing • Scientific computation • Tractability of multivariate problems • Vision and image understanding.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信