从随机函数信息中优化恢复线性算子

IF 1.8 2区 数学 Q1 MATHEMATICS
K.Yu. Osipenko
{"title":"从随机函数信息中优化恢复线性算子","authors":"K.Yu. Osipenko","doi":"10.1016/j.jco.2024.101903","DOIUrl":null,"url":null,"abstract":"<div><div>The paper concerns problems of the recovery of linear operators defined on sets of functions from information of these functions given with stochastic errors. The constructed optimal recovery methods, in general, do not use all the available information. As a consequence, optimal methods are obtained for recovering derivatives of functions from Sobolev classes by the information of their Fourier transforms given with stochastic errors. A similar problem is considered for solutions of the heat equation.</div></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"86 ","pages":"Article 101903"},"PeriodicalIF":1.8000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal recovery of linear operators from information of random functions\",\"authors\":\"K.Yu. Osipenko\",\"doi\":\"10.1016/j.jco.2024.101903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The paper concerns problems of the recovery of linear operators defined on sets of functions from information of these functions given with stochastic errors. The constructed optimal recovery methods, in general, do not use all the available information. As a consequence, optimal methods are obtained for recovering derivatives of functions from Sobolev classes by the information of their Fourier transforms given with stochastic errors. A similar problem is considered for solutions of the heat equation.</div></div>\",\"PeriodicalId\":50227,\"journal\":{\"name\":\"Journal of Complexity\",\"volume\":\"86 \",\"pages\":\"Article 101903\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Complexity\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0885064X24000803\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complexity","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X24000803","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文涉及从带有随机误差的函数信息中恢复定义在函数集合上的线性算子的问题。一般来说,所构建的最优复原方法并不能利用所有可用信息。因此,利用随机误差给出的函数傅里叶变换信息,可以获得从索博廖夫类中恢复函数导数的最优方法。对于热方程的解,也考虑了类似的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal recovery of linear operators from information of random functions
The paper concerns problems of the recovery of linear operators defined on sets of functions from information of these functions given with stochastic errors. The constructed optimal recovery methods, in general, do not use all the available information. As a consequence, optimal methods are obtained for recovering derivatives of functions from Sobolev classes by the information of their Fourier transforms given with stochastic errors. A similar problem is considered for solutions of the heat equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Complexity
Journal of Complexity 工程技术-计算机:理论方法
CiteScore
3.10
自引率
17.60%
发文量
57
审稿时长
>12 weeks
期刊介绍: The multidisciplinary Journal of Complexity publishes original research papers that contain substantial mathematical results on complexity as broadly conceived. Outstanding review papers will also be published. In the area of computational complexity, the focus is on complexity over the reals, with the emphasis on lower bounds and optimal algorithms. The Journal of Complexity also publishes articles that provide major new algorithms or make important progress on upper bounds. Other models of computation, such as the Turing machine model, are also of interest. Computational complexity results in a wide variety of areas are solicited. Areas Include: • Approximation theory • Biomedical computing • Compressed computing and sensing • Computational finance • Computational number theory • Computational stochastics • Control theory • Cryptography • Design of experiments • Differential equations • Discrete problems • Distributed and parallel computation • High and infinite-dimensional problems • Information-based complexity • Inverse and ill-posed problems • Machine learning • Markov chain Monte Carlo • Monte Carlo and quasi-Monte Carlo • Multivariate integration and approximation • Noisy data • Nonlinear and algebraic equations • Numerical analysis • Operator equations • Optimization • Quantum computing • Scientific computation • Tractability of multivariate problems • Vision and image understanding.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信