Canadian Mathematical Bulletin最新文献

筛选
英文 中文
On irreducible representations of Fuchsian groups 论福氏群的不可还原代表
Canadian Mathematical Bulletin Pub Date : 2024-08-27 DOI: 10.4153/s0008439524000389
Vikraman Balaji, Yashonidhi Pandey
{"title":"On irreducible representations of Fuchsian groups","authors":"Vikraman Balaji, Yashonidhi Pandey","doi":"10.4153/s0008439524000389","DOIUrl":"https://doi.org/10.4153/s0008439524000389","url":null,"abstract":"<p>Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160050503-0755:S0008439524000389:S0008439524000389_inline1.png\"><span data-mathjax-type=\"texmath\"><span>${mathcal {R}} subset mathbb {P}^1_{mathbb {C}}$</span></span></img></span></span> be a finite subset of markings. Let <span>G</span> be an almost simple simply-connected algebraic group over <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160050503-0755:S0008439524000389:S0008439524000389_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$mathbb {C}$</span></span></img></span></span>. Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160050503-0755:S0008439524000389:S0008439524000389_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$K_G$</span></span></img></span></span> denote the compact real form of <span>G</span>. Suppose for each lasso <span>l</span> around the marked point, a conjugacy class <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160050503-0755:S0008439524000389:S0008439524000389_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$C_l$</span></span></img></span></span> in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160050503-0755:S0008439524000389:S0008439524000389_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$K_G$</span></span></img></span></span> is prescribed. The aim of this paper is to give verifiable criteria for the existence of an <span>irreducible</span> homomorphism of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160050503-0755:S0008439524000389:S0008439524000389_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$pi _{1}(mathbb P^1_{mathbb {C}} ,{backslash}, {mathcal {R}})$</span></span></img></span></span> into <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160050503-0755:S0008439524000389:S0008439524000389_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$K_G$</span></span></img></span></span> such that the image of <span>l</span> lies in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160050503-0755:S0008439524000389:S0008439524000389_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$C_l$</span></span></img></span></span>.</p>","PeriodicalId":501184,"journal":{"name":"Canadian Mathematical Bulletin","volume":"22 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142184014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strong digraph groups 强数图组
Canadian Mathematical Bulletin Pub Date : 2024-05-31 DOI: 10.4153/s0008439524000390
Mehmet Sefa Cihan, Gerald Williams
{"title":"Strong digraph groups","authors":"Mehmet Sefa Cihan, Gerald Williams","doi":"10.4153/s0008439524000390","DOIUrl":"https://doi.org/10.4153/s0008439524000390","url":null,"abstract":"<p>A digraph group is a group defined by non-empty presentation with the property that each relator is of the form <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913163950622-0833:S0008439524000390:S0008439524000390_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$R(x, y)$</span></span></img></span></span>, where <span>x</span> and <span>y</span> are distinct generators and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913163950622-0833:S0008439524000390:S0008439524000390_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$R(cdot , cdot )$</span></span></img></span></span> is determined by some fixed cyclically reduced word <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913163950622-0833:S0008439524000390:S0008439524000390_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$R(a, b)$</span></span></img></span></span> that involves both <span>a</span> and <span>b</span>. Associated with each such presentation is a digraph whose vertices correspond to the generators and whose arcs correspond to the relators. In this article, we consider digraph groups for strong digraphs that are digon-free and triangle-free. We classify when the digraph group is finite and show that in these cases it is cyclic, giving its order. We apply this result to the Cayley digraph of the generalized quaternion group, to circulant digraphs, and to Cartesian and direct products of strong digraphs.</p>","PeriodicalId":501184,"journal":{"name":"Canadian Mathematical Bulletin","volume":"63 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142259755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
General theorems for uniform asymptotic stability and boundedness in finitely delayed difference systems 有限延迟差分系统中均匀渐近稳定性和有界性的一般定理
Canadian Mathematical Bulletin Pub Date : 2024-05-27 DOI: 10.4153/s0008439524000353
Youssef N. Raffoul
{"title":"General theorems for uniform asymptotic stability and boundedness in finitely delayed difference systems","authors":"Youssef N. Raffoul","doi":"10.4153/s0008439524000353","DOIUrl":"https://doi.org/10.4153/s0008439524000353","url":null,"abstract":"<p>The paper deals with boundedness of solutions and uniform asymptotic stability of the zero solution. In our current undertaking, we aim to solve two open problems that were proposed by the author in his book <span>Qualitative theory of Volterra difference equations</span> (2018, Springer, Cham). Our approach centers on finding the appropriate Lyapunov functional that satisfies specific conditions, incorporating the concept of wedges.</p>","PeriodicalId":501184,"journal":{"name":"Canadian Mathematical Bulletin","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142259756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Counting elements of the congruence subgroup 全等子群元素计数
Canadian Mathematical Bulletin Pub Date : 2024-05-22 DOI: 10.4153/s0008439524000365
Kamil Bulinski, Igor E. Shparlinski
{"title":"Counting elements of the congruence subgroup","authors":"Kamil Bulinski, Igor E. Shparlinski","doi":"10.4153/s0008439524000365","DOIUrl":"https://doi.org/10.4153/s0008439524000365","url":null,"abstract":"","PeriodicalId":501184,"journal":{"name":"Canadian Mathematical Bulletin","volume":"87 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141111780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Minimal Subfields of Elliptic Curves 椭圆曲线的最小子域
Canadian Mathematical Bulletin Pub Date : 2024-05-22 DOI: 10.4153/s0008439524000341
Samprit Ghosh
{"title":"Minimal Subfields of Elliptic Curves","authors":"Samprit Ghosh","doi":"10.4153/s0008439524000341","DOIUrl":"https://doi.org/10.4153/s0008439524000341","url":null,"abstract":"","PeriodicalId":501184,"journal":{"name":"Canadian Mathematical Bulletin","volume":"56 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141112657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On some convexity questions of Handelman 关于汉德尔曼的一些凸性问题
Canadian Mathematical Bulletin Pub Date : 2024-05-16 DOI: 10.4153/s0008439524000316
Brian Simanek
{"title":"On some convexity questions of Handelman","authors":"Brian Simanek","doi":"10.4153/s0008439524000316","DOIUrl":"https://doi.org/10.4153/s0008439524000316","url":null,"abstract":"<p>We resolve some questions posed by Handelman in 1996 concerning log convex <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529095608048-0637:S0008439524000316:S0008439524000316_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$L^1$</span></span></img></span></span> functions. In particular, we give a negative answer to a question he posed concerning the integrability of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529095608048-0637:S0008439524000316:S0008439524000316_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$h^2(x)/h(2x)$</span></span></img></span></span> when <span>h</span> is <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529095608048-0637:S0008439524000316:S0008439524000316_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$L^1$</span></span></img></span></span> and log convex and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529095608048-0637:S0008439524000316:S0008439524000316_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$h(n)^{1/n}rightarrow 1$</span></span></img></span></span>.</p>","PeriodicalId":501184,"journal":{"name":"Canadian Mathematical Bulletin","volume":"2012 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141197403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Harnack inequality and harmonic Schwarz lemma 关于哈纳克不等式和谐波施瓦茨两难式
Canadian Mathematical Bulletin Pub Date : 2024-05-10 DOI: 10.4153/s0008439524000298
Rahim Kargar
{"title":"On Harnack inequality and harmonic Schwarz lemma","authors":"Rahim Kargar","doi":"10.4153/s0008439524000298","DOIUrl":"https://doi.org/10.4153/s0008439524000298","url":null,"abstract":"<p>In this paper, we study the <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529073251569-0683:S0008439524000298:S0008439524000298_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$(s, C(s))$</span></span></img></span></span>-Harnack inequality in a domain <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529073251569-0683:S0008439524000298:S0008439524000298_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$Gsubset mathbb {R}^n$</span></span></img></span></span> for <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529073251569-0683:S0008439524000298:S0008439524000298_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$sin (0,1)$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529073251569-0683:S0008439524000298:S0008439524000298_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$C(s)geq 1$</span></span></img></span></span> and present a series of inequalities related to <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529073251569-0683:S0008439524000298:S0008439524000298_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$(s, C(s))$</span></span></img></span></span>-Harnack functions and the Harnack metric. We also investigate the behavior of the Harnack metric under <span>K</span>-quasiconformal and <span>K</span>-quasiregular mappings, where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529073251569-0683:S0008439524000298:S0008439524000298_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$Kgeq 1$</span></span></img></span></span>. Finally, we provide a type of harmonic Schwarz lemma and improve the Schwarz–Pick estimate for a real-valued harmonic function.</p>","PeriodicalId":501184,"journal":{"name":"Canadian Mathematical Bulletin","volume":"29 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141189008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phase retrieval on circles and lines 圆和线的相位检索
Canadian Mathematical Bulletin Pub Date : 2024-05-10 DOI: 10.4153/s0008439524000304
Isabelle Chalendar, Jonathan R. Partington
{"title":"Phase retrieval on circles and lines","authors":"Isabelle Chalendar, Jonathan R. Partington","doi":"10.4153/s0008439524000304","DOIUrl":"https://doi.org/10.4153/s0008439524000304","url":null,"abstract":"<p>Let <span>f</span> and <span>g</span> be analytic functions on the open unit disk <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240524113158354-0988:S0008439524000304:S0008439524000304_inline1.png\"><span data-mathjax-type=\"texmath\"><span>${mathbb D}$</span></span></img></span></span> such that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240524113158354-0988:S0008439524000304:S0008439524000304_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$|f|=|g|$</span></span></img></span></span> on a set <span>A</span>. We give an alternative proof of the result of Perez that there exists <span>c</span> in the unit circle <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240524113158354-0988:S0008439524000304:S0008439524000304_inline3.png\"><span data-mathjax-type=\"texmath\"><span>${mathbb T}$</span></span></img></span></span> such that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240524113158354-0988:S0008439524000304:S0008439524000304_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$f=cg$</span></span></img></span></span> when <span>A</span> is the union of two lines in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240524113158354-0988:S0008439524000304:S0008439524000304_inline5.png\"><span data-mathjax-type=\"texmath\"><span>${mathbb D}$</span></span></img></span></span> intersecting at an angle that is an irrational multiple of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240524113158354-0988:S0008439524000304:S0008439524000304_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$pi $</span></span></img></span></span>, and from this, deduce a sequential generalization of the result. Similarly, the same conclusion is valid when <span>f</span> and <span>g</span> are in the Nevanlinna class and <span>A</span> is the union of the unit circle and an interior circle, tangential or not. We also provide sequential versions of this result and analyze the case <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240524113158354-0988:S0008439524000304:S0008439524000304_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$A=r{mathbb T}$</span></span></img></span></span>. Finally, we examine the most general situation when there is equality on two distinct circles in the disk, proving a result or counterexample for each possible configuration.</p>","PeriodicalId":501184,"journal":{"name":"Canadian Mathematical Bulletin","volume":"29 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141169773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pieri rules for skew dual immaculate functions 斜对偶无懈可击函数的皮耶里规则
Canadian Mathematical Bulletin Pub Date : 2024-04-29 DOI: 10.4153/s0008439524000274
Elizabeth Niese, Sheila Sundaram, Stephanie van Willigenburg, Shiyun Wang
{"title":"Pieri rules for skew dual immaculate functions","authors":"Elizabeth Niese, Sheila Sundaram, Stephanie van Willigenburg, Shiyun Wang","doi":"10.4153/s0008439524000274","DOIUrl":"https://doi.org/10.4153/s0008439524000274","url":null,"abstract":"<p>In this paper, we give Pieri rules for skew dual immaculate functions and their recently discovered row-strict counterparts. We establish our rules using a right-action analogue of the skew Littlewood–Richardson rule for Hopf algebras of Lam–Lauve–Sottile. We also obtain Pieri rules for row-strict (dual) immaculate functions.</p>","PeriodicalId":501184,"journal":{"name":"Canadian Mathematical Bulletin","volume":"24 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141061019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adjoint Reidemeister torsions of some 3-manifolds obtained by Dehn surgeries 通过 Dehn 手术获得的一些 3-manifolds的 Adjoint Reidemeister torsions
Canadian Mathematical Bulletin Pub Date : 2024-04-22 DOI: 10.4153/s0008439524000262
Naoko Wakijo
{"title":"Adjoint Reidemeister torsions of some 3-manifolds obtained by Dehn surgeries","authors":"Naoko Wakijo","doi":"10.4153/s0008439524000262","DOIUrl":"https://doi.org/10.4153/s0008439524000262","url":null,"abstract":"<p>We determine the adjoint Reidemeister torsion of a <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240508060747903-0951:S0008439524000262:S0008439524000262_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$3$</span></span></img></span></span>-manifold obtained by some Dehn surgery along <span>K</span>, where <span>K</span> is either the figure-eight knot or the <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240508060747903-0951:S0008439524000262:S0008439524000262_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$5_2$</span></span></img></span></span>-knot. As in a vanishing conjecture (Benini et al. (2020, <span>Journal of High Energy Physics</span> 2020, 57), Gang et al. (2020, <span>Journal of High Energy Physics</span> 2020, 164), and Gang et al. (2021, <span>Advances in Theoretical and Mathematical Physics</span> 25, 1819–1845)), we consider a similar conjecture and show that the conjecture holds for the 3-manifold.</p>","PeriodicalId":501184,"journal":{"name":"Canadian Mathematical Bulletin","volume":"60 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140934253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信