Phase retrieval on circles and lines

Isabelle Chalendar, Jonathan R. Partington
{"title":"Phase retrieval on circles and lines","authors":"Isabelle Chalendar, Jonathan R. Partington","doi":"10.4153/s0008439524000304","DOIUrl":null,"url":null,"abstract":"<p>Let <span>f</span> and <span>g</span> be analytic functions on the open unit disk <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240524113158354-0988:S0008439524000304:S0008439524000304_inline1.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathbb D}$</span></span></img></span></span> such that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240524113158354-0988:S0008439524000304:S0008439524000304_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$|f|=|g|$</span></span></img></span></span> on a set <span>A</span>. We give an alternative proof of the result of Perez that there exists <span>c</span> in the unit circle <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240524113158354-0988:S0008439524000304:S0008439524000304_inline3.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathbb T}$</span></span></img></span></span> such that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240524113158354-0988:S0008439524000304:S0008439524000304_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$f=cg$</span></span></img></span></span> when <span>A</span> is the union of two lines in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240524113158354-0988:S0008439524000304:S0008439524000304_inline5.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathbb D}$</span></span></img></span></span> intersecting at an angle that is an irrational multiple of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240524113158354-0988:S0008439524000304:S0008439524000304_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$\\pi $</span></span></img></span></span>, and from this, deduce a sequential generalization of the result. Similarly, the same conclusion is valid when <span>f</span> and <span>g</span> are in the Nevanlinna class and <span>A</span> is the union of the unit circle and an interior circle, tangential or not. We also provide sequential versions of this result and analyze the case <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240524113158354-0988:S0008439524000304:S0008439524000304_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$A=r{\\mathbb T}$</span></span></img></span></span>. Finally, we examine the most general situation when there is equality on two distinct circles in the disk, proving a result or counterexample for each possible configuration.</p>","PeriodicalId":501184,"journal":{"name":"Canadian Mathematical Bulletin","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Mathematical Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008439524000304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let f and g be analytic functions on the open unit disk Abstract Image${\mathbb D}$ such that Abstract Image$|f|=|g|$ on a set A. We give an alternative proof of the result of Perez that there exists c in the unit circle Abstract Image${\mathbb T}$ such that Abstract Image$f=cg$ when A is the union of two lines in Abstract Image${\mathbb D}$ intersecting at an angle that is an irrational multiple of Abstract Image$\pi $, and from this, deduce a sequential generalization of the result. Similarly, the same conclusion is valid when f and g are in the Nevanlinna class and A is the union of the unit circle and an interior circle, tangential or not. We also provide sequential versions of this result and analyze the case Abstract Image$A=r{\mathbb T}$. Finally, we examine the most general situation when there is equality on two distinct circles in the disk, proving a result or counterexample for each possible configuration.

圆和线的相位检索
让 f 和 g 是开放单位圆盘 ${\mathbb D}$上的解析函数,使得集合 A 上的 $|f|=|g|$。我们给出了对 Perez 结果的另一种证明,即当 A 是 ${\mathbb D}$ 中两条直线的结合,且这两条直线相交的角度是 $\pi $ 的无理倍数时,单位圆 ${\mathbb T}$ 中存在 c,使得 $f=cg$。同样,当 f 和 g 属于内万林那类,且 A 是单位圆与内圆的结合(无论是否相切)时,同样的结论也成立。我们还提供了这一结果的顺序版本,并分析了 $A=r{\mathbb T}$ 的情况。最后,我们研究了圆盘中两个不同圆上相等的最一般情况,证明了每种可能配置的结果或反例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信