{"title":"On irreducible representations of Fuchsian groups","authors":"Vikraman Balaji, Yashonidhi Pandey","doi":"10.4153/s0008439524000389","DOIUrl":null,"url":null,"abstract":"<p>Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160050503-0755:S0008439524000389:S0008439524000389_inline1.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathcal {R}} \\subset \\mathbb {P}^1_{\\mathbb {C}}$</span></span></img></span></span> be a finite subset of markings. Let <span>G</span> be an almost simple simply-connected algebraic group over <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160050503-0755:S0008439524000389:S0008439524000389_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {C}$</span></span></img></span></span>. Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160050503-0755:S0008439524000389:S0008439524000389_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$K_G$</span></span></img></span></span> denote the compact real form of <span>G</span>. Suppose for each lasso <span>l</span> around the marked point, a conjugacy class <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160050503-0755:S0008439524000389:S0008439524000389_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$C_l$</span></span></img></span></span> in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160050503-0755:S0008439524000389:S0008439524000389_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$K_G$</span></span></img></span></span> is prescribed. The aim of this paper is to give verifiable criteria for the existence of an <span>irreducible</span> homomorphism of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160050503-0755:S0008439524000389:S0008439524000389_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$\\pi _{1}(\\mathbb P^1_{\\mathbb {C}} \\,{\\backslash}\\, {\\mathcal {R}})$</span></span></img></span></span> into <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160050503-0755:S0008439524000389:S0008439524000389_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$K_G$</span></span></img></span></span> such that the image of <span>l</span> lies in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160050503-0755:S0008439524000389:S0008439524000389_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$C_l$</span></span></img></span></span>.</p>","PeriodicalId":501184,"journal":{"name":"Canadian Mathematical Bulletin","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Mathematical Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008439524000389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let ${\mathcal {R}} \subset \mathbb {P}^1_{\mathbb {C}}$ be a finite subset of markings. Let G be an almost simple simply-connected algebraic group over $\mathbb {C}$. Let $K_G$ denote the compact real form of G. Suppose for each lasso l around the marked point, a conjugacy class $C_l$ in $K_G$ is prescribed. The aim of this paper is to give verifiable criteria for the existence of an irreducible homomorphism of $\pi _{1}(\mathbb P^1_{\mathbb {C}} \,{\backslash}\, {\mathcal {R}})$ into $K_G$ such that the image of l lies in $C_l$.