关于哈纳克不等式和谐波施瓦茨两难式

Rahim Kargar
{"title":"关于哈纳克不等式和谐波施瓦茨两难式","authors":"Rahim Kargar","doi":"10.4153/s0008439524000298","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study the <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529073251569-0683:S0008439524000298:S0008439524000298_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$(s, C(s))$</span></span></img></span></span>-Harnack inequality in a domain <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529073251569-0683:S0008439524000298:S0008439524000298_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$G\\subset \\mathbb {R}^n$</span></span></img></span></span> for <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529073251569-0683:S0008439524000298:S0008439524000298_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$s\\in (0,1)$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529073251569-0683:S0008439524000298:S0008439524000298_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$C(s)\\geq 1$</span></span></img></span></span> and present a series of inequalities related to <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529073251569-0683:S0008439524000298:S0008439524000298_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$(s, C(s))$</span></span></img></span></span>-Harnack functions and the Harnack metric. We also investigate the behavior of the Harnack metric under <span>K</span>-quasiconformal and <span>K</span>-quasiregular mappings, where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529073251569-0683:S0008439524000298:S0008439524000298_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$K\\geq 1$</span></span></img></span></span>. Finally, we provide a type of harmonic Schwarz lemma and improve the Schwarz–Pick estimate for a real-valued harmonic function.</p>","PeriodicalId":501184,"journal":{"name":"Canadian Mathematical Bulletin","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Harnack inequality and harmonic Schwarz lemma\",\"authors\":\"Rahim Kargar\",\"doi\":\"10.4153/s0008439524000298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we study the <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529073251569-0683:S0008439524000298:S0008439524000298_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$(s, C(s))$</span></span></img></span></span>-Harnack inequality in a domain <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529073251569-0683:S0008439524000298:S0008439524000298_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$G\\\\subset \\\\mathbb {R}^n$</span></span></img></span></span> for <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529073251569-0683:S0008439524000298:S0008439524000298_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$s\\\\in (0,1)$</span></span></img></span></span> and <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529073251569-0683:S0008439524000298:S0008439524000298_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$C(s)\\\\geq 1$</span></span></img></span></span> and present a series of inequalities related to <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529073251569-0683:S0008439524000298:S0008439524000298_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$(s, C(s))$</span></span></img></span></span>-Harnack functions and the Harnack metric. We also investigate the behavior of the Harnack metric under <span>K</span>-quasiconformal and <span>K</span>-quasiregular mappings, where <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529073251569-0683:S0008439524000298:S0008439524000298_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$K\\\\geq 1$</span></span></img></span></span>. Finally, we provide a type of harmonic Schwarz lemma and improve the Schwarz–Pick estimate for a real-valued harmonic function.</p>\",\"PeriodicalId\":501184,\"journal\":{\"name\":\"Canadian Mathematical Bulletin\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Mathematical Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4153/s0008439524000298\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Mathematical Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008439524000298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了域 $G\subset \mathbb {R}^n$ 中 $s\in (0,1)$ 和 $C(s)\geq 1$ 的 $(s, C(s))$ 哈纳克不等式,并提出了一系列与 $(s, C(s))$ 哈纳克函数和哈纳克度量相关的不等式。我们还研究了哈纳克度量在 K- 类共形和 K- 类共形映射(其中 $K\geq 1$)下的行为。最后,我们提供了一种谐波施瓦茨 Lemma,并改进了实值谐函数的施瓦茨-皮克估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Harnack inequality and harmonic Schwarz lemma

In this paper, we study the $(s, C(s))$-Harnack inequality in a domain $G\subset \mathbb {R}^n$ for $s\in (0,1)$ and $C(s)\geq 1$ and present a series of inequalities related to $(s, C(s))$-Harnack functions and the Harnack metric. We also investigate the behavior of the Harnack metric under K-quasiconformal and K-quasiregular mappings, where $K\geq 1$. Finally, we provide a type of harmonic Schwarz lemma and improve the Schwarz–Pick estimate for a real-valued harmonic function.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信