通过 Dehn 手术获得的一些 3-manifolds的 Adjoint Reidemeister torsions

Naoko Wakijo
{"title":"通过 Dehn 手术获得的一些 3-manifolds的 Adjoint Reidemeister torsions","authors":"Naoko Wakijo","doi":"10.4153/s0008439524000262","DOIUrl":null,"url":null,"abstract":"<p>We determine the adjoint Reidemeister torsion of a <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240508060747903-0951:S0008439524000262:S0008439524000262_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$3$</span></span></img></span></span>-manifold obtained by some Dehn surgery along <span>K</span>, where <span>K</span> is either the figure-eight knot or the <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240508060747903-0951:S0008439524000262:S0008439524000262_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$5_2$</span></span></img></span></span>-knot. As in a vanishing conjecture (Benini et al. (2020, <span>Journal of High Energy Physics</span> 2020, 57), Gang et al. (2020, <span>Journal of High Energy Physics</span> 2020, 164), and Gang et al. (2021, <span>Advances in Theoretical and Mathematical Physics</span> 25, 1819–1845)), we consider a similar conjecture and show that the conjecture holds for the 3-manifold.</p>","PeriodicalId":501184,"journal":{"name":"Canadian Mathematical Bulletin","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adjoint Reidemeister torsions of some 3-manifolds obtained by Dehn surgeries\",\"authors\":\"Naoko Wakijo\",\"doi\":\"10.4153/s0008439524000262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We determine the adjoint Reidemeister torsion of a <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240508060747903-0951:S0008439524000262:S0008439524000262_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$3$</span></span></img></span></span>-manifold obtained by some Dehn surgery along <span>K</span>, where <span>K</span> is either the figure-eight knot or the <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240508060747903-0951:S0008439524000262:S0008439524000262_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$5_2$</span></span></img></span></span>-knot. As in a vanishing conjecture (Benini et al. (2020, <span>Journal of High Energy Physics</span> 2020, 57), Gang et al. (2020, <span>Journal of High Energy Physics</span> 2020, 164), and Gang et al. (2021, <span>Advances in Theoretical and Mathematical Physics</span> 25, 1819–1845)), we consider a similar conjecture and show that the conjecture holds for the 3-manifold.</p>\",\"PeriodicalId\":501184,\"journal\":{\"name\":\"Canadian Mathematical Bulletin\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Mathematical Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4153/s0008439524000262\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Mathematical Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008439524000262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们确定了沿着 K(其中 K 是八字形结或 5_2$ 结)进行一些 Dehn 手术后得到的 3$-manifold(3$-manifold)的邻接 Reidemeister 扭转。正如一个消失猜想(贝尼尼等人(2020,《高能物理学报》,2020,57),Gang 等人(2020,《高能物理学报》,2020,164),以及 Gang 等人(2021,《理论与数学物理学进展》,25,1819-1845)),我们考虑了一个类似的猜想,并证明该猜想对 3$-manifold 成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adjoint Reidemeister torsions of some 3-manifolds obtained by Dehn surgeries

We determine the adjoint Reidemeister torsion of a $3$-manifold obtained by some Dehn surgery along K, where K is either the figure-eight knot or the $5_2$-knot. As in a vanishing conjecture (Benini et al. (2020, Journal of High Energy Physics 2020, 57), Gang et al. (2020, Journal of High Energy Physics 2020, 164), and Gang et al. (2021, Advances in Theoretical and Mathematical Physics 25, 1819–1845)), we consider a similar conjecture and show that the conjecture holds for the 3-manifold.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信