{"title":"论福氏群的不可还原代表","authors":"Vikraman Balaji, Yashonidhi Pandey","doi":"10.4153/s0008439524000389","DOIUrl":null,"url":null,"abstract":"<p>Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160050503-0755:S0008439524000389:S0008439524000389_inline1.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathcal {R}} \\subset \\mathbb {P}^1_{\\mathbb {C}}$</span></span></img></span></span> be a finite subset of markings. Let <span>G</span> be an almost simple simply-connected algebraic group over <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160050503-0755:S0008439524000389:S0008439524000389_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {C}$</span></span></img></span></span>. Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160050503-0755:S0008439524000389:S0008439524000389_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$K_G$</span></span></img></span></span> denote the compact real form of <span>G</span>. Suppose for each lasso <span>l</span> around the marked point, a conjugacy class <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160050503-0755:S0008439524000389:S0008439524000389_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$C_l$</span></span></img></span></span> in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160050503-0755:S0008439524000389:S0008439524000389_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$K_G$</span></span></img></span></span> is prescribed. The aim of this paper is to give verifiable criteria for the existence of an <span>irreducible</span> homomorphism of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160050503-0755:S0008439524000389:S0008439524000389_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$\\pi _{1}(\\mathbb P^1_{\\mathbb {C}} \\,{\\backslash}\\, {\\mathcal {R}})$</span></span></img></span></span> into <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160050503-0755:S0008439524000389:S0008439524000389_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$K_G$</span></span></img></span></span> such that the image of <span>l</span> lies in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160050503-0755:S0008439524000389:S0008439524000389_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$C_l$</span></span></img></span></span>.</p>","PeriodicalId":501184,"journal":{"name":"Canadian Mathematical Bulletin","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On irreducible representations of Fuchsian groups\",\"authors\":\"Vikraman Balaji, Yashonidhi Pandey\",\"doi\":\"10.4153/s0008439524000389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160050503-0755:S0008439524000389:S0008439524000389_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathcal {R}} \\\\subset \\\\mathbb {P}^1_{\\\\mathbb {C}}$</span></span></img></span></span> be a finite subset of markings. Let <span>G</span> be an almost simple simply-connected algebraic group over <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160050503-0755:S0008439524000389:S0008439524000389_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {C}$</span></span></img></span></span>. Let <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160050503-0755:S0008439524000389:S0008439524000389_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$K_G$</span></span></img></span></span> denote the compact real form of <span>G</span>. Suppose for each lasso <span>l</span> around the marked point, a conjugacy class <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160050503-0755:S0008439524000389:S0008439524000389_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$C_l$</span></span></img></span></span> in <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160050503-0755:S0008439524000389:S0008439524000389_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$K_G$</span></span></img></span></span> is prescribed. The aim of this paper is to give verifiable criteria for the existence of an <span>irreducible</span> homomorphism of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160050503-0755:S0008439524000389:S0008439524000389_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\pi _{1}(\\\\mathbb P^1_{\\\\mathbb {C}} \\\\,{\\\\backslash}\\\\, {\\\\mathcal {R}})$</span></span></img></span></span> into <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160050503-0755:S0008439524000389:S0008439524000389_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$K_G$</span></span></img></span></span> such that the image of <span>l</span> lies in <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240910160050503-0755:S0008439524000389:S0008439524000389_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$C_l$</span></span></img></span></span>.</p>\",\"PeriodicalId\":501184,\"journal\":{\"name\":\"Canadian Mathematical Bulletin\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Mathematical Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4153/s0008439524000389\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Mathematical Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008439524000389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
让 ${\mathcal {R}}\是一个有限的标记子集。让 G 是一个在 $\mathbb {C}$ 上的几乎简单简单连接的代数群。让 $K_G$ 表示 G 的紧凑实形式。假设对标记点周围的每个套索 l 都规定了 $K_G$ 中的共轭类 $C_l$。本文的目的是给出$K_G$中存在$\pi _{1}(\mathbb P^1_{\mathbb {C}}\,{\backslash}\, {\mathcal {R}})$的不可还原同态的可验证标准,使得l的映像位于$C_l$中。
Let ${\mathcal {R}} \subset \mathbb {P}^1_{\mathbb {C}}$ be a finite subset of markings. Let G be an almost simple simply-connected algebraic group over $\mathbb {C}$. Let $K_G$ denote the compact real form of G. Suppose for each lasso l around the marked point, a conjugacy class $C_l$ in $K_G$ is prescribed. The aim of this paper is to give verifiable criteria for the existence of an irreducible homomorphism of $\pi _{1}(\mathbb P^1_{\mathbb {C}} \,{\backslash}\, {\mathcal {R}})$ into $K_G$ such that the image of l lies in $C_l$.