Canadian Mathematical Bulletin最新文献

筛选
英文 中文
A generalization of immanants based on partition algebra characters 基于分区代数字符的常量概化
Canadian Mathematical Bulletin Pub Date : 2024-04-01 DOI: 10.4153/s0008439524000249
John M. Campbell
{"title":"A generalization of immanants based on partition algebra characters","authors":"John M. Campbell","doi":"10.4153/s0008439524000249","DOIUrl":"https://doi.org/10.4153/s0008439524000249","url":null,"abstract":"<p>We introduce a generalization of immanants of matrices, using partition algebra characters in place of symmetric group characters. We prove that our immanant-like function on square matrices, which we refer to as the <span>recombinant</span>, agrees with the usual definition for immanants for the special case whereby the vacillating tableaux associated with the irreducible characters correspond, according to the Bratteli diagram for partition algebra representations, to the integer partition shapes for symmetric group characters. In contrast to previously studied variants and generalizations of immanants, as in Temperley–Lieb immanants and <span>f</span>-immanants, the sum that we use to define recombinants is indexed by a full set of partition diagrams, as opposed to permutations.</p>","PeriodicalId":501184,"journal":{"name":"Canadian Mathematical Bulletin","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142184015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Existence of singular rotationally symmetric gradient Ricci solitons in higher dimensions 高维奇异旋转对称梯度利玛窦孤子的存在性
Canadian Mathematical Bulletin Pub Date : 2024-03-21 DOI: 10.4153/s0008439524000237
Kin Ming Hui
{"title":"Existence of singular rotationally symmetric gradient Ricci solitons in higher dimensions","authors":"Kin Ming Hui","doi":"10.4153/s0008439524000237","DOIUrl":"https://doi.org/10.4153/s0008439524000237","url":null,"abstract":"<p>By using fixed point argument, we give a proof for the existence of singular rotationally symmetric steady and expanding gradient Ricci solitons in higher dimensions with metric <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240403061655231-0392:S0008439524000237:S0008439524000237_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$g=frac {da^2}{h(a^2)}+a^2g_{S^n}$</span></span></img></span></span> for some function <span>h</span> where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240403061655231-0392:S0008439524000237:S0008439524000237_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$g_{S^n}$</span></span></img></span></span> is the standard metric on the unit sphere <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240403061655231-0392:S0008439524000237:S0008439524000237_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$S^n$</span></span></img></span></span> in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240403061655231-0392:S0008439524000237:S0008439524000237_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$mathbb {R}^n$</span></span></img></span></span> for any <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240403061655231-0392:S0008439524000237:S0008439524000237_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$nge 2$</span></span></img></span></span>. More precisely, for any <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240403061655231-0392:S0008439524000237:S0008439524000237_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$lambda ge 0$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240403061655231-0392:S0008439524000237:S0008439524000237_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$c_0&gt;0$</span></span></img></span></span>, we prove that there exist infinitely many solutions <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240403061655231-0392:S0008439524000237:S0008439524000237_inline8.png\"><span data-mathjax-type=\"texmath\"><span>${hin C^2((0,infty );mathbb {R}^+)}$</span></span></img></span></span> for the equation <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240403061655231-0392:S0008439524000237:S0008439524000237_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$2r^2h(r)h_{rr}","PeriodicalId":501184,"journal":{"name":"Canadian Mathematical Bulletin","volume":"19 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140573286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
OMEGA RESULTS FOR THE ERROR TERM IN THE SQUARE-FREE DIVISOR PROBLEM FOR SQUARE-FULL INTEGERS 平方整数无平方除数问题中误差项的欧米伽结果
Canadian Mathematical Bulletin Pub Date : 2024-03-20 DOI: 10.4153/s0008439524000225
Debika Banerjee, Makoto Minamide
{"title":"OMEGA RESULTS FOR THE ERROR TERM IN THE SQUARE-FREE DIVISOR PROBLEM FOR SQUARE-FULL INTEGERS","authors":"Debika Banerjee, Makoto Minamide","doi":"10.4153/s0008439524000225","DOIUrl":"https://doi.org/10.4153/s0008439524000225","url":null,"abstract":"","PeriodicalId":501184,"journal":{"name":"Canadian Mathematical Bulletin","volume":"362 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140228041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ALMOST SURE CONVERGENCE OF THE NORM OF LITTLEWOOD POLYNOMIALS Littlewood 多项式规范的几乎确定收敛性
Canadian Mathematical Bulletin Pub Date : 2024-03-15 DOI: 10.4153/s0008439524000213
Yongjiang Duan, Xiang Fang, NA Zhan
{"title":"ALMOST SURE CONVERGENCE OF THE NORM OF LITTLEWOOD POLYNOMIALS","authors":"Yongjiang Duan, Xiang Fang, NA Zhan","doi":"10.4153/s0008439524000213","DOIUrl":"https://doi.org/10.4153/s0008439524000213","url":null,"abstract":"","PeriodicalId":501184,"journal":{"name":"Canadian Mathematical Bulletin","volume":"30 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140238945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IDEALS WITH COMPONENTWISE LINEAR POWERS 具有分量线性幂的理想
Canadian Mathematical Bulletin Pub Date : 2024-03-12 DOI: 10.4153/s0008439524000201
Takayuki Hibi, Somayeh Moradi
{"title":"IDEALS WITH COMPONENTWISE LINEAR POWERS","authors":"Takayuki Hibi, Somayeh Moradi","doi":"10.4153/s0008439524000201","DOIUrl":"https://doi.org/10.4153/s0008439524000201","url":null,"abstract":"","PeriodicalId":501184,"journal":{"name":"Canadian Mathematical Bulletin","volume":"110 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140250515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A class of Hessian quotient equations in de Sitter space 德西特空间中的一类黑森商数方程
Canadian Mathematical Bulletin Pub Date : 2024-03-06 DOI: 10.4153/s0008439524000183
Jinyu Gao, Guanghan Li, Kuicheng Ma
{"title":"A class of Hessian quotient equations in de Sitter space","authors":"Jinyu Gao, Guanghan Li, Kuicheng Ma","doi":"10.4153/s0008439524000183","DOIUrl":"https://doi.org/10.4153/s0008439524000183","url":null,"abstract":"<p>In this paper, we consider the closed spacelike solution to a class of Hessian quotient equations in de Sitter space. Under mild assumptions, we obtain an existence result using standard degree theory based on a priori estimates.</p>","PeriodicalId":501184,"journal":{"name":"Canadian Mathematical Bulletin","volume":"294 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140203229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Linear independence of series related to the Thue–Morse sequence along powers 与 Thue-Morse 序列相关的序列沿幂级数的线性独立性
Canadian Mathematical Bulletin Pub Date : 2024-03-06 DOI: 10.4153/s0008439524000195
Michael Coons, Yohei Tachiya
{"title":"Linear independence of series related to the Thue–Morse sequence along powers","authors":"Michael Coons, Yohei Tachiya","doi":"10.4153/s0008439524000195","DOIUrl":"https://doi.org/10.4153/s0008439524000195","url":null,"abstract":"<p>The Thue–Morse sequence <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240321105855809-0602:S0008439524000195:S0008439524000195_inline1.png\"><span data-mathjax-type=\"texmath\"><span>${t(n)}_{ngeqslant 0}$</span></span></img></span></span> is the indicator function of the parity of the number of ones in the binary expansion of nonnegative integers <span>n</span>, where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240321105855809-0602:S0008439524000195:S0008439524000195_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$t(n)=1$</span></span></img></span></span> (resp. <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240321105855809-0602:S0008439524000195:S0008439524000195_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$=0$</span></span></img></span></span>) if the binary expansion of <span>n</span> has an odd (resp. even) number of ones. In this paper, we generalize a recent result of E. Miyanohara by showing that, for a fixed Pisot or Salem number <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240321105855809-0602:S0008439524000195:S0008439524000195_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$beta&gt;sqrt {varphi }=1.272019ldots $</span></span></img></span></span>, the set of the numbers <span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240321105855809-0602:S0008439524000195:S0008439524000195_eqnu1.png\"><span data-mathjax-type=\"texmath\"><span>$$begin{align*}1,quad sum_{ngeqslant1}frac{t(n)}{beta^{n}},quad sum_{ngeqslant1}frac{t(n^2)}{beta^{n}},quad dots, quad sum_{ngeqslant1}frac{t(n^k)}{beta^{n}},quad dots end{align*}$$</span></span></img></span>is linearly independent over the field <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240321105855809-0602:S0008439524000195:S0008439524000195_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$mathbb {Q}(beta )$</span></span></img></span></span>, where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240321105855809-0602:S0008439524000195:S0008439524000195_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$varphi :=(1+sqrt {5})/2$</span></span></img></span></span> is the golden ratio. Our result yields that for any integer <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240321105855809-0602:S0008439524000195:S0008439524000195_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$kgeqslant 1$</span><","PeriodicalId":501184,"journal":{"name":"Canadian Mathematical Bulletin","volume":"156 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140203435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Moments of the central L-values of the Asai lifts 浅井升降机中心 L 值的矩
Canadian Mathematical Bulletin Pub Date : 2024-03-04 DOI: 10.4153/s0008439524000171
Wenzhi Luo
{"title":"Moments of the central L-values of the Asai lifts","authors":"Wenzhi Luo","doi":"10.4153/s0008439524000171","DOIUrl":"https://doi.org/10.4153/s0008439524000171","url":null,"abstract":"<p>We study some analytic properties of the Asai lifts associated with cuspidal Hilbert modular forms, and prove sharp bounds for the second moment of their central <span>L</span>-values.</p>","PeriodicalId":501184,"journal":{"name":"Canadian Mathematical Bulletin","volume":"22 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140165656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Complexity of Extending the Convergence Domain of Newton’s Method Under the Weak Majorant Condition 论弱马约兰特条件下扩展牛顿方法收敛域的复杂性
Canadian Mathematical Bulletin Pub Date : 2024-03-01 DOI: 10.4153/s000843952400016x
Ioannis K. Argyros, S. George
{"title":"On the Complexity of Extending the Convergence Domain of Newton’s Method Under the Weak Majorant Condition","authors":"Ioannis K. Argyros, S. George","doi":"10.4153/s000843952400016x","DOIUrl":"https://doi.org/10.4153/s000843952400016x","url":null,"abstract":"","PeriodicalId":501184,"journal":{"name":"Canadian Mathematical Bulletin","volume":"46 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140085658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hausdorff operators on some classical spaces of analytic functions 一些经典解析函数空间上的豪斯多夫算子
Canadian Mathematical Bulletin Pub Date : 2024-02-29 DOI: 10.4153/s0008439524000158
Huayou Xie, Qingze Lin
{"title":"Hausdorff operators on some classical spaces of analytic functions","authors":"Huayou Xie, Qingze Lin","doi":"10.4153/s0008439524000158","DOIUrl":"https://doi.org/10.4153/s0008439524000158","url":null,"abstract":"<p>In this note, we start on the study of the sufficient conditions for the boundedness of Hausdorff operators <span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319144838897-0455:S0008439524000158:S0008439524000158_eqnu1.png\"><span data-mathjax-type=\"texmath\"><span>$$ begin{align*}(mathcal{H}_{K,mu}f)(z):=int_{mathbb{D}}K(w)f(sigma_w(z))dmu(w)end{align*} $$</span></span></img></span>on three important function spaces (i.e., derivative Hardy spaces, weighted Dirichlet spaces, and Bloch type spaces), which is a continuation of the previous works of Mirotin et al. Here, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319144838897-0455:S0008439524000158:S0008439524000158_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$mu $</span></span></img></span></span> is a positive Radon measure, <span>K</span> is a <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319144838897-0455:S0008439524000158:S0008439524000158_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$mu $</span></span></img></span></span>-measurable function on the open unit disk <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319144838897-0455:S0008439524000158:S0008439524000158_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$mathbb {D}$</span></span></img></span></span>, and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319144838897-0455:S0008439524000158:S0008439524000158_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$sigma _w(z)$</span></span></img></span></span> is the classical Möbius transform of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319144838897-0455:S0008439524000158:S0008439524000158_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$mathbb {D}$</span></span></img></span></span>.</p>","PeriodicalId":501184,"journal":{"name":"Canadian Mathematical Bulletin","volume":"290 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140165966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信