一些经典解析函数空间上的豪斯多夫算子

Huayou Xie, Qingze Lin
{"title":"一些经典解析函数空间上的豪斯多夫算子","authors":"Huayou Xie, Qingze Lin","doi":"10.4153/s0008439524000158","DOIUrl":null,"url":null,"abstract":"<p>In this note, we start on the study of the sufficient conditions for the boundedness of Hausdorff operators <span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319144838897-0455:S0008439524000158:S0008439524000158_eqnu1.png\"><span data-mathjax-type=\"texmath\"><span>$$ \\begin{align*}(\\mathcal{H}_{K,\\mu}f)(z):=\\int_{\\mathbb{D}}K(w)f(\\sigma_w(z))d\\mu(w)\\end{align*} $$</span></span></img></span>on three important function spaces (i.e., derivative Hardy spaces, weighted Dirichlet spaces, and Bloch type spaces), which is a continuation of the previous works of Mirotin et al. Here, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319144838897-0455:S0008439524000158:S0008439524000158_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\mu $</span></span></img></span></span> is a positive Radon measure, <span>K</span> is a <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319144838897-0455:S0008439524000158:S0008439524000158_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\mu $</span></span></img></span></span>-measurable function on the open unit disk <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319144838897-0455:S0008439524000158:S0008439524000158_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {D}$</span></span></img></span></span>, and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319144838897-0455:S0008439524000158:S0008439524000158_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\sigma _w(z)$</span></span></img></span></span> is the classical Möbius transform of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319144838897-0455:S0008439524000158:S0008439524000158_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {D}$</span></span></img></span></span>.</p>","PeriodicalId":501184,"journal":{"name":"Canadian Mathematical Bulletin","volume":"290 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hausdorff operators on some classical spaces of analytic functions\",\"authors\":\"Huayou Xie, Qingze Lin\",\"doi\":\"10.4153/s0008439524000158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this note, we start on the study of the sufficient conditions for the boundedness of Hausdorff operators <span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319144838897-0455:S0008439524000158:S0008439524000158_eqnu1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$$ \\\\begin{align*}(\\\\mathcal{H}_{K,\\\\mu}f)(z):=\\\\int_{\\\\mathbb{D}}K(w)f(\\\\sigma_w(z))d\\\\mu(w)\\\\end{align*} $$</span></span></img></span>on three important function spaces (i.e., derivative Hardy spaces, weighted Dirichlet spaces, and Bloch type spaces), which is a continuation of the previous works of Mirotin et al. Here, <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319144838897-0455:S0008439524000158:S0008439524000158_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mu $</span></span></img></span></span> is a positive Radon measure, <span>K</span> is a <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319144838897-0455:S0008439524000158:S0008439524000158_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mu $</span></span></img></span></span>-measurable function on the open unit disk <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319144838897-0455:S0008439524000158:S0008439524000158_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {D}$</span></span></img></span></span>, and <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319144838897-0455:S0008439524000158:S0008439524000158_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\sigma _w(z)$</span></span></img></span></span> is the classical Möbius transform of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319144838897-0455:S0008439524000158:S0008439524000158_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {D}$</span></span></img></span></span>.</p>\",\"PeriodicalId\":501184,\"journal\":{\"name\":\"Canadian Mathematical Bulletin\",\"volume\":\"290 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Mathematical Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4153/s0008439524000158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Mathematical Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008439524000158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本论文中,我们首先研究 Hausdorff 算子 $$ (\begin{align*}(\mathcal{H}_{K,\mu}f)(z):=\int_{mathbb{D}}K(w)f(\sigma_w(z))d\mu(w))有界性的充分条件。这里,$\mu $ 是一个正的拉顿度量,K 是开放单位盘 $\mathbb {D}$ 上的一个 $\mu $ 可度量函数,$\sigma _w(z)$ 是 $\mathbb {D}$ 的经典莫比乌斯变换。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hausdorff operators on some classical spaces of analytic functions

In this note, we start on the study of the sufficient conditions for the boundedness of Hausdorff operators $$ \begin{align*}(\mathcal{H}_{K,\mu}f)(z):=\int_{\mathbb{D}}K(w)f(\sigma_w(z))d\mu(w)\end{align*} $$on three important function spaces (i.e., derivative Hardy spaces, weighted Dirichlet spaces, and Bloch type spaces), which is a continuation of the previous works of Mirotin et al. Here, $\mu $ is a positive Radon measure, K is a $\mu $-measurable function on the open unit disk $\mathbb {D}$, and $\sigma _w(z)$ is the classical Möbius transform of $\mathbb {D}$.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信