高维奇异旋转对称梯度利玛窦孤子的存在性

Kin Ming Hui
{"title":"高维奇异旋转对称梯度利玛窦孤子的存在性","authors":"Kin Ming Hui","doi":"10.4153/s0008439524000237","DOIUrl":null,"url":null,"abstract":"<p>By using fixed point argument, we give a proof for the existence of singular rotationally symmetric steady and expanding gradient Ricci solitons in higher dimensions with metric <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240403061655231-0392:S0008439524000237:S0008439524000237_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$g=\\frac {da^2}{h(a^2)}+a^2g_{S^n}$</span></span></img></span></span> for some function <span>h</span> where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240403061655231-0392:S0008439524000237:S0008439524000237_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$g_{S^n}$</span></span></img></span></span> is the standard metric on the unit sphere <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240403061655231-0392:S0008439524000237:S0008439524000237_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$S^n$</span></span></img></span></span> in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240403061655231-0392:S0008439524000237:S0008439524000237_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {R}^n$</span></span></img></span></span> for any <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240403061655231-0392:S0008439524000237:S0008439524000237_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$n\\ge 2$</span></span></img></span></span>. More precisely, for any <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240403061655231-0392:S0008439524000237:S0008439524000237_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$\\lambda \\ge 0$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240403061655231-0392:S0008439524000237:S0008439524000237_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$c_0&gt;0$</span></span></img></span></span>, we prove that there exist infinitely many solutions <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240403061655231-0392:S0008439524000237:S0008439524000237_inline8.png\"><span data-mathjax-type=\"texmath\"><span>${h\\in C^2((0,\\infty );\\mathbb {R}^+)}$</span></span></img></span></span> for the equation <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240403061655231-0392:S0008439524000237:S0008439524000237_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$2r^2h(r)h_{rr}(r)=(n-1)h(r)(h(r)-1)+rh_r(r)(rh_r(r)-\\lambda r-(n-1))$</span></span></img></span></span>, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240403061655231-0392:S0008439524000237:S0008439524000237_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$h(r)&gt;0$</span></span></img></span></span>, in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240403061655231-0392:S0008439524000237:S0008439524000237_inline11.png\"><span data-mathjax-type=\"texmath\"><span>$(0,\\infty )$</span></span></img></span></span> satisfying <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240403061655231-0392:S0008439524000237:S0008439524000237_inline12.png\"><span data-mathjax-type=\"texmath\"><span>$\\underset {\\substack {r\\to 0}}{\\lim }\\,r^{\\sqrt {n}-1}h(r)=c_0$</span></span></img></span></span> and prove the higher-order asymptotic behavior of the global singular solutions near the origin. We also find conditions for the existence of unique global singular solution of such equation in terms of its asymptotic behavior near the origin.</p>","PeriodicalId":501184,"journal":{"name":"Canadian Mathematical Bulletin","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of singular rotationally symmetric gradient Ricci solitons in higher dimensions\",\"authors\":\"Kin Ming Hui\",\"doi\":\"10.4153/s0008439524000237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>By using fixed point argument, we give a proof for the existence of singular rotationally symmetric steady and expanding gradient Ricci solitons in higher dimensions with metric <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240403061655231-0392:S0008439524000237:S0008439524000237_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$g=\\\\frac {da^2}{h(a^2)}+a^2g_{S^n}$</span></span></img></span></span> for some function <span>h</span> where <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240403061655231-0392:S0008439524000237:S0008439524000237_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$g_{S^n}$</span></span></img></span></span> is the standard metric on the unit sphere <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240403061655231-0392:S0008439524000237:S0008439524000237_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$S^n$</span></span></img></span></span> in <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240403061655231-0392:S0008439524000237:S0008439524000237_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {R}^n$</span></span></img></span></span> for any <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240403061655231-0392:S0008439524000237:S0008439524000237_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$n\\\\ge 2$</span></span></img></span></span>. More precisely, for any <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240403061655231-0392:S0008439524000237:S0008439524000237_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\lambda \\\\ge 0$</span></span></img></span></span> and <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240403061655231-0392:S0008439524000237:S0008439524000237_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$c_0&gt;0$</span></span></img></span></span>, we prove that there exist infinitely many solutions <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240403061655231-0392:S0008439524000237:S0008439524000237_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${h\\\\in C^2((0,\\\\infty );\\\\mathbb {R}^+)}$</span></span></img></span></span> for the equation <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240403061655231-0392:S0008439524000237:S0008439524000237_inline9.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$2r^2h(r)h_{rr}(r)=(n-1)h(r)(h(r)-1)+rh_r(r)(rh_r(r)-\\\\lambda r-(n-1))$</span></span></img></span></span>, <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240403061655231-0392:S0008439524000237:S0008439524000237_inline10.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$h(r)&gt;0$</span></span></img></span></span>, in <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240403061655231-0392:S0008439524000237:S0008439524000237_inline11.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$(0,\\\\infty )$</span></span></img></span></span> satisfying <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240403061655231-0392:S0008439524000237:S0008439524000237_inline12.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\underset {\\\\substack {r\\\\to 0}}{\\\\lim }\\\\,r^{\\\\sqrt {n}-1}h(r)=c_0$</span></span></img></span></span> and prove the higher-order asymptotic behavior of the global singular solutions near the origin. We also find conditions for the existence of unique global singular solution of such equation in terms of its asymptotic behavior near the origin.</p>\",\"PeriodicalId\":501184,\"journal\":{\"name\":\"Canadian Mathematical Bulletin\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Mathematical Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4153/s0008439524000237\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Mathematical Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008439524000237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过使用定点论证,我们证明了奇异旋转对称稳定和扩展梯度里奇孤子在更高维度上的存在性,其度量$g=\frac {da^2}{h(a^2)}+a^2g_{S^n}$ 为某个函数h,其中$g_{S^n}$是任意$n\ge 2$的$mathbb {R}^n$ 中单位球$S^n$上的标准度量。更确切地说,对于任意 $\lambda \ge 0$ 和 $c_0>0$,我们证明存在无穷多个解 ${h\in C^2((0,\infty );\方程$2r^2h(r)h_{rr}(r)=(n-1)h(r)(h(r)-1)+rh_r(r)(rh_r(r)-\lambda r-(n-1))}$, $h(r)>;0$, in $(0,\infty )$ satisfying $\underset {\substack {r\to 0}}{\lim }\,r^{\sqrt {n}-1}h(r)=c_0$ 并证明了原点附近全局奇异解的高阶渐近行为。我们还从该方程在原点附近的渐近行为出发,找到了该方程唯一全局奇异解存在的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of singular rotationally symmetric gradient Ricci solitons in higher dimensions

By using fixed point argument, we give a proof for the existence of singular rotationally symmetric steady and expanding gradient Ricci solitons in higher dimensions with metric $g=\frac {da^2}{h(a^2)}+a^2g_{S^n}$ for some function h where $g_{S^n}$ is the standard metric on the unit sphere $S^n$ in $\mathbb {R}^n$ for any $n\ge 2$. More precisely, for any $\lambda \ge 0$ and $c_0>0$, we prove that there exist infinitely many solutions ${h\in C^2((0,\infty );\mathbb {R}^+)}$ for the equation $2r^2h(r)h_{rr}(r)=(n-1)h(r)(h(r)-1)+rh_r(r)(rh_r(r)-\lambda r-(n-1))$, $h(r)>0$, in $(0,\infty )$ satisfying $\underset {\substack {r\to 0}}{\lim }\,r^{\sqrt {n}-1}h(r)=c_0$ and prove the higher-order asymptotic behavior of the global singular solutions near the origin. We also find conditions for the existence of unique global singular solution of such equation in terms of its asymptotic behavior near the origin.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信