{"title":"Hausdorff operators on some classical spaces of analytic functions","authors":"Huayou Xie, Qingze Lin","doi":"10.4153/s0008439524000158","DOIUrl":null,"url":null,"abstract":"<p>In this note, we start on the study of the sufficient conditions for the boundedness of Hausdorff operators <span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319144838897-0455:S0008439524000158:S0008439524000158_eqnu1.png\"><span data-mathjax-type=\"texmath\"><span>$$ \\begin{align*}(\\mathcal{H}_{K,\\mu}f)(z):=\\int_{\\mathbb{D}}K(w)f(\\sigma_w(z))d\\mu(w)\\end{align*} $$</span></span></img></span>on three important function spaces (i.e., derivative Hardy spaces, weighted Dirichlet spaces, and Bloch type spaces), which is a continuation of the previous works of Mirotin et al. Here, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319144838897-0455:S0008439524000158:S0008439524000158_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\mu $</span></span></img></span></span> is a positive Radon measure, <span>K</span> is a <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319144838897-0455:S0008439524000158:S0008439524000158_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\mu $</span></span></img></span></span>-measurable function on the open unit disk <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319144838897-0455:S0008439524000158:S0008439524000158_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {D}$</span></span></img></span></span>, and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319144838897-0455:S0008439524000158:S0008439524000158_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\sigma _w(z)$</span></span></img></span></span> is the classical Möbius transform of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240319144838897-0455:S0008439524000158:S0008439524000158_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathbb {D}$</span></span></img></span></span>.</p>","PeriodicalId":501184,"journal":{"name":"Canadian Mathematical Bulletin","volume":"290 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Mathematical Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008439524000158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this note, we start on the study of the sufficient conditions for the boundedness of Hausdorff operators $$ \begin{align*}(\mathcal{H}_{K,\mu}f)(z):=\int_{\mathbb{D}}K(w)f(\sigma_w(z))d\mu(w)\end{align*} $$on three important function spaces (i.e., derivative Hardy spaces, weighted Dirichlet spaces, and Bloch type spaces), which is a continuation of the previous works of Mirotin et al. Here, $\mu $ is a positive Radon measure, K is a $\mu $-measurable function on the open unit disk $\mathbb {D}$, and $\sigma _w(z)$ is the classical Möbius transform of $\mathbb {D}$.