Strong digraph groups

Mehmet Sefa Cihan, Gerald Williams
{"title":"Strong digraph groups","authors":"Mehmet Sefa Cihan, Gerald Williams","doi":"10.4153/s0008439524000390","DOIUrl":null,"url":null,"abstract":"<p>A digraph group is a group defined by non-empty presentation with the property that each relator is of the form <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913163950622-0833:S0008439524000390:S0008439524000390_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$R(x, y)$</span></span></img></span></span>, where <span>x</span> and <span>y</span> are distinct generators and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913163950622-0833:S0008439524000390:S0008439524000390_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$R(\\cdot , \\cdot )$</span></span></img></span></span> is determined by some fixed cyclically reduced word <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240913163950622-0833:S0008439524000390:S0008439524000390_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$R(a, b)$</span></span></img></span></span> that involves both <span>a</span> and <span>b</span>. Associated with each such presentation is a digraph whose vertices correspond to the generators and whose arcs correspond to the relators. In this article, we consider digraph groups for strong digraphs that are digon-free and triangle-free. We classify when the digraph group is finite and show that in these cases it is cyclic, giving its order. We apply this result to the Cayley digraph of the generalized quaternion group, to circulant digraphs, and to Cartesian and direct products of strong digraphs.</p>","PeriodicalId":501184,"journal":{"name":"Canadian Mathematical Bulletin","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Mathematical Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008439524000390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A digraph group is a group defined by non-empty presentation with the property that each relator is of the form Abstract Image$R(x, y)$, where x and y are distinct generators and Abstract Image$R(\cdot , \cdot )$ is determined by some fixed cyclically reduced word Abstract Image$R(a, b)$ that involves both a and b. Associated with each such presentation is a digraph whose vertices correspond to the generators and whose arcs correspond to the relators. In this article, we consider digraph groups for strong digraphs that are digon-free and triangle-free. We classify when the digraph group is finite and show that in these cases it is cyclic, giving its order. We apply this result to the Cayley digraph of the generalized quaternion group, to circulant digraphs, and to Cartesian and direct products of strong digraphs.

强数图组
数图群是由非空表达式定义的群,其属性是每个关系子的形式为 $R(x,y)$,其中 x 和 y 是不同的生成器,而 $R(\cdot , \cdot )$ 是由某个固定的循环缩减词 $R(a, b)$ 确定的,该词同时涉及 a 和 b。与每个这样的表达式相关联的是一个数图,其顶点对应于生成器,其弧对应于关系子。在本文中,我们考虑的是强数字图的数字图群,这些数字图是无数字子和无三角形的。我们对数字图群有限的情况进行了分类,并证明在这些情况下,数字图群是循环的,并给出了它的阶数。我们将这一结果应用于广义四元组的 Cayley 数字图、环状数字图以及强数字图的笛卡尔积和直积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信