arXiv - MATH - Number Theory最新文献

筛选
英文 中文
A six-functor formalism for quasi-coherent sheaves and crystals on rigid-analytic varieties 刚性解析变体上准相干剪切和晶体的六矢量形式主义
arXiv - MATH - Number Theory Pub Date : 2024-09-11 DOI: arxiv-2409.07592
Arun Soor
{"title":"A six-functor formalism for quasi-coherent sheaves and crystals on rigid-analytic varieties","authors":"Arun Soor","doi":"arxiv-2409.07592","DOIUrl":"https://doi.org/arxiv-2409.07592","url":null,"abstract":"We develop a theory of derived rigid spaces and quasi-coherent sheaves and\u0000analytic crystals on them. Amongst other things, we obtain a six-functor\u0000formalism for these quasi-coherent sheaves and analytic crystals. We provide\u0000evidence that the category of analytic crystals is related to the theory of\u0000D-cap-modules introduced by Ardakov--Wadsley.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"26 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142203802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Periodic sign changes for weakly holomorphic $η$-quotients 弱全态 $η$-quotients 的周期性符号变化
arXiv - MATH - Number Theory Pub Date : 2024-09-11 DOI: arxiv-2409.07164
Kathrin Bringmann, Guoniu Han, Bernhard Heim, Ben Kane
{"title":"Periodic sign changes for weakly holomorphic $η$-quotients","authors":"Kathrin Bringmann, Guoniu Han, Bernhard Heim, Ben Kane","doi":"arxiv-2409.07164","DOIUrl":"https://doi.org/arxiv-2409.07164","url":null,"abstract":"In this paper, we study sign changes of weakly holomorphic modular forms\u0000which are given as $eta$-quotients. We give representative examples for forms\u0000of negative weight, weight zero, and positive weight.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"39 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142203824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the positivity and integrality of coefficients of mirror maps 论镜像映射系数的实在性和积分性
arXiv - MATH - Number Theory Pub Date : 2024-09-11 DOI: arxiv-2409.07601
Sophie Bleau, Nick Sheridan
{"title":"On the positivity and integrality of coefficients of mirror maps","authors":"Sophie Bleau, Nick Sheridan","doi":"arxiv-2409.07601","DOIUrl":"https://doi.org/arxiv-2409.07601","url":null,"abstract":"We present natural conjectural generalizations of the `positivity and\u0000integrality of mirror maps' phenomenon, encompassing the mirror maps appearing\u0000in the Batyrev--Borisov construction of mirror Calabi--Yau complete\u0000intersections in Fano toric varieties as a special case. We find that, given\u0000the combinatorial data from which one constructs a mirror pair of Calabi--Yau\u0000complete intersections, there are two ways of writing down an associated\u0000`mirror map': one which is the `true mirror map', meaning the one which appears\u0000in mirror symmetry theorems; and one which is the `naive mirror map'. The two\u0000are equal under a certain combinatorial criterion which holds e.g. for the\u0000quintic threefold, but not in general. We conjecture (based on substantial\u0000computer checks, together with proofs under extra hypotheses) that the naive\u0000mirror map always has positive integer coefficients, while the true mirror map\u0000always has integer (but not necessarily positive) coefficients. Almost all\u0000previous works on the integrality of mirror maps concern the naive mirror map,\u0000and in particular, only apply to the true mirror map under the combinatorial\u0000criterion mentioned above.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"13 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142203801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On some determinant conjectures 关于一些行列式猜想
arXiv - MATH - Number Theory Pub Date : 2024-09-11 DOI: arxiv-2409.07008
Ze-Hua Zhu, Chen-Kai Ren
{"title":"On some determinant conjectures","authors":"Ze-Hua Zhu, Chen-Kai Ren","doi":"arxiv-2409.07008","DOIUrl":"https://doi.org/arxiv-2409.07008","url":null,"abstract":"Let $p$ be a prime and $c,dinmathbb{Z}$. Sun introduced the determinant\u0000$D_p^-(c,d):=det[(i^2+cij+dj^2)^{p-2}]_{1<i,j<p-1}$ for $p>3$. In this paper,\u0000we confirm three conjectures on $D_p^-(c,d)$ proposed by Zhi-Wei Sun.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142203806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diophantine stability for curves over finite fields 有限域上曲线的 Diophantine 稳定性
arXiv - MATH - Number Theory Pub Date : 2024-09-11 DOI: arxiv-2409.07086
Francesc Bars, Joan Carles Lario
{"title":"Diophantine stability for curves over finite fields","authors":"Francesc Bars, Joan Carles Lario","doi":"arxiv-2409.07086","DOIUrl":"https://doi.org/arxiv-2409.07086","url":null,"abstract":"We carry out a survey on curves defined over finite fields that are\u0000Diophantine stable; that is, with the property that the set of points of the\u0000curve is not altered under a proper field extension. First, we derive some\u0000general results of such curves and then we analyze several families of curves\u0000that happen to be Diophantine stable.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"39 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142203837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Submonoid Membership in n-dimensional lamplighter groups and S-unit equations n 维点灯组中的子单体成员和 S 单位方程
arXiv - MATH - Number Theory Pub Date : 2024-09-11 DOI: arxiv-2409.07077
Ruiwen Dong
{"title":"Submonoid Membership in n-dimensional lamplighter groups and S-unit equations","authors":"Ruiwen Dong","doi":"arxiv-2409.07077","DOIUrl":"https://doi.org/arxiv-2409.07077","url":null,"abstract":"We show that Submonoid Membership is decidable in n-dimensional lamplighter\u0000groups $(mathbb{Z}/pmathbb{Z}) wr mathbb{Z}^n$ for any prime $p$ and\u0000integer $n$. More generally, we show decidability of Submonoid Membership in\u0000semidirect products of the form $mathcal{Y} rtimes mathbb{Z}^n$, where\u0000$mathcal{Y}$ is any finitely presented module over the Laurent polynomial ring\u0000$mathbb{F}_p[X_1^{pm}, ldots, X_n^{pm}]$. Combined with a result of Shafrir\u0000(2024), this gives the first example of a group $G$ and a finite index subgroup\u0000$widetilde{G} leq G$, such that Submonoid Membership is decidable in\u0000$widetilde{G}$ but undecidable in $G$. To obtain our decidability result, we reduce Submonoid Membership in\u0000$mathcal{Y} rtimes mathbb{Z}^n$ to solving S-unit equations over\u0000$mathbb{F}_p[X_1^{pm}, ldots, X_n^{pm}]$-modules. We show that the solution\u0000set of such equations is effectively $p$-automatic, extending a result of\u0000Adamczewski and Bell (2012). As an intermediate result, we also obtain that the\u0000solution set of the Knapsack Problem in $mathcal{Y} rtimes mathbb{Z}^n$ is\u0000effectively $p$-automatic.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142203825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Public-key encryption from a trapdoor one-way embedding of $SL_2(mathbb{N}$) 来自$SL_2(mathbb{N}$)陷阱门单向嵌入的公钥加密
arXiv - MATH - Number Theory Pub Date : 2024-09-11 DOI: arxiv-2409.07616
Robert Hines
{"title":"Public-key encryption from a trapdoor one-way embedding of $SL_2(mathbb{N}$)","authors":"Robert Hines","doi":"arxiv-2409.07616","DOIUrl":"https://doi.org/arxiv-2409.07616","url":null,"abstract":"We obfuscate words of a given length in a free monoid on two generators with\u0000a simple factorization algorithm (namely $SL_2(mathbb{N})$) to create a\u0000public-key encryption scheme. We provide a reference implementation in Python\u0000and suggested parameters. The security analysis is between weak and\u0000non-existent, left to future work.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"76 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142203803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Additive Bases: Change of Domain 加法基地:领域变化
arXiv - MATH - Number Theory Pub Date : 2024-09-11 DOI: arxiv-2409.07442
Boris Bukh, Peter van Hintum, Peter Keevash
{"title":"Additive Bases: Change of Domain","authors":"Boris Bukh, Peter van Hintum, Peter Keevash","doi":"arxiv-2409.07442","DOIUrl":"https://doi.org/arxiv-2409.07442","url":null,"abstract":"We consider two questions of Ruzsa on how the minimum size of an additive\u0000basis $B$ of a given set $A$ depends on the domain of $B$. To state these\u0000questions, for an abelian group $G$ and $A subseteq D subseteq G$ we write\u0000$ell_D(A) colon =min { |B|: B subseteq D, A subseteq B+B }$. Ruzsa\u0000asked how much larger can $ell_{mathbb{Z}}(A)$ be than $ell_{mathbb{Q}}(A)$\u0000for $Asubsetmathbb{Z}$, and how much larger can $ell_{mathbb{N}}(A)$ be\u0000than $ell_{mathbb{Z}}(A)$ for $Asubsetmathbb{N}$. For the first question we\u0000show that if $ell_{mathbb{Q}}(A) = n$ then $ell_{mathbb{Z}}(A) le 2n$, and\u0000that this is tight up to an additive error of at most $O(sqrt{n})$. For the\u0000second question, we show that if $ell_{mathbb{Z}}(A) = n$ then\u0000$ell_{mathbb{N}}(A) le O(nlog n)$, and this is tight up to the constant\u0000factor. We also consider these questions for higher order bases. Our proofs use\u0000some ideas that are unexpected in this context, including linear algebra and\u0000Diophantine approximation.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"40 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142203804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Graham's rearrangement conjecture beyond the rectification barrier 格雷厄姆重排猜想超越整流障碍
arXiv - MATH - Number Theory Pub Date : 2024-09-11 DOI: arxiv-2409.07403
Benjamin Bedert, Noah Kravitz
{"title":"Graham's rearrangement conjecture beyond the rectification barrier","authors":"Benjamin Bedert, Noah Kravitz","doi":"arxiv-2409.07403","DOIUrl":"https://doi.org/arxiv-2409.07403","url":null,"abstract":"A 1971 conjecture of Graham (later repeated by ErdH{o}s and Graham) asserts\u0000that every set $A subseteq mathbb{F}_p setminus {0}$ has an ordering whose\u0000partial sums are all distinct. We prove this conjecture for sets of size $|A|\u0000leqslant e^{(log p)^{1/4}}$; our result improves the previous bound of $log\u0000p/log log p$. One ingredient in our argument is a structure theorem involving\u0000dissociated sets, which may be of independent interest.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"110 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142203823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Explicit formula for the $(text{GL}_2, text{GL}_2)$ theta lift via Bruhat decomposition 通过布鲁哈特分解的 $(text{GL}_2, text{GL}_2)$θ 升维的明确公式
arXiv - MATH - Number Theory Pub Date : 2024-09-11 DOI: arxiv-2409.06940
Peter Xu
{"title":"Explicit formula for the $(text{GL}_2, text{GL}_2)$ theta lift via Bruhat decomposition","authors":"Peter Xu","doi":"arxiv-2409.06940","DOIUrl":"https://doi.org/arxiv-2409.06940","url":null,"abstract":"Using combinations of weight-1 and weight-2 of Kronecker-Eisenstein series to\u0000construct currents in the distributional de Rham complex of a squared elliptic\u0000curve, we find a simple explicit formula for the type II $(text{GL}_2,\u0000text{GL}_2)$ theta lift without smoothing, analogous to the classical formula\u0000of Siegel for periods of Eisenstein series. For $K$ a CM field, the same\u0000technique applies without change to obtain an analogous formula for the\u0000$(text{GL}_2(K),K^times)$ theta correspondence.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142203807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信