论镜像映射系数的实在性和积分性

Sophie Bleau, Nick Sheridan
{"title":"论镜像映射系数的实在性和积分性","authors":"Sophie Bleau, Nick Sheridan","doi":"arxiv-2409.07601","DOIUrl":null,"url":null,"abstract":"We present natural conjectural generalizations of the `positivity and\nintegrality of mirror maps' phenomenon, encompassing the mirror maps appearing\nin the Batyrev--Borisov construction of mirror Calabi--Yau complete\nintersections in Fano toric varieties as a special case. We find that, given\nthe combinatorial data from which one constructs a mirror pair of Calabi--Yau\ncomplete intersections, there are two ways of writing down an associated\n`mirror map': one which is the `true mirror map', meaning the one which appears\nin mirror symmetry theorems; and one which is the `naive mirror map'. The two\nare equal under a certain combinatorial criterion which holds e.g. for the\nquintic threefold, but not in general. We conjecture (based on substantial\ncomputer checks, together with proofs under extra hypotheses) that the naive\nmirror map always has positive integer coefficients, while the true mirror map\nalways has integer (but not necessarily positive) coefficients. Almost all\nprevious works on the integrality of mirror maps concern the naive mirror map,\nand in particular, only apply to the true mirror map under the combinatorial\ncriterion mentioned above.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the positivity and integrality of coefficients of mirror maps\",\"authors\":\"Sophie Bleau, Nick Sheridan\",\"doi\":\"arxiv-2409.07601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present natural conjectural generalizations of the `positivity and\\nintegrality of mirror maps' phenomenon, encompassing the mirror maps appearing\\nin the Batyrev--Borisov construction of mirror Calabi--Yau complete\\nintersections in Fano toric varieties as a special case. We find that, given\\nthe combinatorial data from which one constructs a mirror pair of Calabi--Yau\\ncomplete intersections, there are two ways of writing down an associated\\n`mirror map': one which is the `true mirror map', meaning the one which appears\\nin mirror symmetry theorems; and one which is the `naive mirror map'. The two\\nare equal under a certain combinatorial criterion which holds e.g. for the\\nquintic threefold, but not in general. We conjecture (based on substantial\\ncomputer checks, together with proofs under extra hypotheses) that the naive\\nmirror map always has positive integer coefficients, while the true mirror map\\nalways has integer (but not necessarily positive) coefficients. Almost all\\nprevious works on the integrality of mirror maps concern the naive mirror map,\\nand in particular, only apply to the true mirror map under the combinatorial\\ncriterion mentioned above.\",\"PeriodicalId\":501064,\"journal\":{\"name\":\"arXiv - MATH - Number Theory\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07601\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了对 "镜像映射的正整性 "现象的自然猜想性概括,并把在法诺环状变中镜像卡拉比--尤完全交的巴季列夫--波里索夫构造中出现的镜像映射作为特例。我们发现,根据构造卡拉比--尤完全交的镜像对的组合数据,有两种方法可以写出相关的 "镜像映射":一种是 "真镜像映射",即出现在镜像对称定理中的映射;另一种是 "假镜像映射"。这两种镜像图在某种组合标准下是相等的,这种标准在五次三折等情况下成立,但在一般情况下并不成立。我们猜想(基于大量的计算机检查,以及额外假设下的证明),天真镜像映射总是具有正整数系数,而真正的镜像映射总是具有整数系数(但不一定是正)。几乎所有以前关于镜像映射积分性的研究都涉及天真镜像映射,特别是只适用于上述组合标准下的真实镜像映射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the positivity and integrality of coefficients of mirror maps
We present natural conjectural generalizations of the `positivity and integrality of mirror maps' phenomenon, encompassing the mirror maps appearing in the Batyrev--Borisov construction of mirror Calabi--Yau complete intersections in Fano toric varieties as a special case. We find that, given the combinatorial data from which one constructs a mirror pair of Calabi--Yau complete intersections, there are two ways of writing down an associated `mirror map': one which is the `true mirror map', meaning the one which appears in mirror symmetry theorems; and one which is the `naive mirror map'. The two are equal under a certain combinatorial criterion which holds e.g. for the quintic threefold, but not in general. We conjecture (based on substantial computer checks, together with proofs under extra hypotheses) that the naive mirror map always has positive integer coefficients, while the true mirror map always has integer (but not necessarily positive) coefficients. Almost all previous works on the integrality of mirror maps concern the naive mirror map, and in particular, only apply to the true mirror map under the combinatorial criterion mentioned above.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信