arXiv - MATH - Number Theory最新文献

筛选
英文 中文
Congruences for the Apéry numbers modulo $p^3$ 阿佩里数以 $p^3$ 为模数的同余式
arXiv - MATH - Number Theory Pub Date : 2024-09-10 DOI: arxiv-2409.06544
Zhi-Hong Sun
{"title":"Congruences for the Apéry numbers modulo $p^3$","authors":"Zhi-Hong Sun","doi":"arxiv-2409.06544","DOIUrl":"https://doi.org/arxiv-2409.06544","url":null,"abstract":"Let ${A'_n}$ be the Ap'ery numbers given by $A'_n=sum_{k=0}^nbinom\u0000nk^2binom{n+k}k.$ For any prime $pequiv 3pmod 4$ we show that\u0000$A'_{frac{p-1}2}equiv frac{p^2}3binom{frac{p-3}2}{frac{p-3}4}^{-2}pmod\u0000{p^3}$. Let ${t_n}$ be given by $$t_0=1, t_1=5quadhbox{and}quad\u0000t_{n+1}=(8n^2+12n+5)t_n-4n^2(2n+1)^2t_{n-1} (nge 1).$$ We also obtain the\u0000congruences for $t_ppmod {p^3}, t_{p-1}pmod {p^2}$ and $t_{frac{p-1}2}pmod\u0000{p^2}$, where $p$ is an odd prime.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"3 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142203830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Mean Value Theorem for general Dirichlet Series 一般 Dirichlet 数列的均值定理
arXiv - MATH - Number Theory Pub Date : 2024-09-10 DOI: arxiv-2409.06301
Frederik Broucke, Titus Hilberdink
{"title":"A Mean Value Theorem for general Dirichlet Series","authors":"Frederik Broucke, Titus Hilberdink","doi":"arxiv-2409.06301","DOIUrl":"https://doi.org/arxiv-2409.06301","url":null,"abstract":"In this paper we obtain a mean value theorem for a general Dirichlet series\u0000$f(s)= sum_{j=1}^infty a_j n_j^{-s}$ with positive coefficients for which the\u0000counting function $A(x) = sum_{n_{j}le x}a_{j}$ satisfies $A(x)=rho x +\u0000O(x^beta)$ for some $rho>0$ and $beta<1$. We prove that $frac1Tint_0^T\u0000|f(sigma+it)|^2, dt to sum_{j=1}^infty a_j^2n_j^{-2sigma}$ for\u0000$sigma>frac{1+beta}{2}$ and obtain an upper bound for this moment for\u0000$beta<sigmale frac{1+beta}{2}$. We provide a number of examples indicating\u0000the sharpness of our results.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142203828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A family of integrals related to values of the Riemann zeta function 与黎曼zeta函数值有关的积分系列
arXiv - MATH - Number Theory Pub Date : 2024-09-10 DOI: arxiv-2409.06546
Rahul Kumar, Paul Levrie, Jean-Christophe Pain, Victor Scharaschkin
{"title":"A family of integrals related to values of the Riemann zeta function","authors":"Rahul Kumar, Paul Levrie, Jean-Christophe Pain, Victor Scharaschkin","doi":"arxiv-2409.06546","DOIUrl":"https://doi.org/arxiv-2409.06546","url":null,"abstract":"We propose a relation between values of the Riemann zeta function $zeta$ and\u0000a family of integrals. This results in an integral representation for\u0000$zeta(2p)$, where $p$ is a positive integer, and an expression of\u0000$zeta(2p+1)$ involving one of the above mentioned integrals together with a\u0000harmonic-number sum. Simplification of the latter eventually leads to an\u0000integral representation of $zeta(2p + 1)$.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"15 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142203826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
String theory amplitudes and partial fractions 弦理论振幅和部分分数
arXiv - MATH - Number Theory Pub Date : 2024-09-10 DOI: arxiv-2409.06658
Hjalmar Rosengren
{"title":"String theory amplitudes and partial fractions","authors":"Hjalmar Rosengren","doi":"arxiv-2409.06658","DOIUrl":"https://doi.org/arxiv-2409.06658","url":null,"abstract":"We give rigorous proofs and generalizations of partial fraction expansions\u0000for string amplitudes that were recently discovered by Saha and Sinha.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"59 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142203834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Arithmetic degree and its application to Zariski dense orbit conjecture 算术级数及其在扎里斯基密集轨道猜想中的应用
arXiv - MATH - Number Theory Pub Date : 2024-09-10 DOI: arxiv-2409.06160
Yohsuke Matsuzawa, Junyi Xie
{"title":"Arithmetic degree and its application to Zariski dense orbit conjecture","authors":"Yohsuke Matsuzawa, Junyi Xie","doi":"arxiv-2409.06160","DOIUrl":"https://doi.org/arxiv-2409.06160","url":null,"abstract":"We prove that for a dominant rational self-map $f$ on a quasi-projective\u0000variety defined over $overline{mathbb{Q}}$, there is a point whose $f$-orbit\u0000is well-defined and its arithmetic degree is arbitrary close to the first\u0000dynamical degree of $f$. As an application, we prove that Zariski dense orbit\u0000conjecture holds for a birational map defined over $overline{mathbb{Q}}$ such\u0000that the first dynamical degree is strictly larger than the third dynamical\u0000degree. In particular, the conjecture holds for birational maps on threefolds\u0000with first dynamical degree larger than $1$.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"109 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142203836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Class numbers of binary quadratic polynomials 二元二次多项式的类数
arXiv - MATH - Number Theory Pub Date : 2024-09-10 DOI: arxiv-2409.06244
Zichen Yang
{"title":"Class numbers of binary quadratic polynomials","authors":"Zichen Yang","doi":"arxiv-2409.06244","DOIUrl":"https://doi.org/arxiv-2409.06244","url":null,"abstract":"In this paper, we give a formula for the proper class number of a binary\u0000quadratic polynomial assuming that the conductor ideal is sufficiently\u0000divisible at dyadic places. This allows us to study the growth of the proper\u0000class numbers of totally positive binary quadratic polynomials. As an\u0000application, we prove finiteness results on totally positive binary quadratic\u0000polynomials with a fixed quadratic part and a fixed proper class number.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"14 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142203829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiplicative groups avoiding a fixed group 避免固定群的乘法群
arXiv - MATH - Number Theory Pub Date : 2024-09-10 DOI: arxiv-2409.06869
Matthias Hannesson, Greg Martin
{"title":"Multiplicative groups avoiding a fixed group","authors":"Matthias Hannesson, Greg Martin","doi":"arxiv-2409.06869","DOIUrl":"https://doi.org/arxiv-2409.06869","url":null,"abstract":"We know that any finite abelian group $G$ appears as a subgroup of infinitely\u0000many multiplicative groups $mathbb{Z}_n^times$ (the abelian groups of size\u0000$phi(n)$ that are the multiplicative groups of units in the rings\u0000$mathbb{Z}/nmathbb{Z}$). It seems to be less well appeciated that $G$ appears\u0000as a subgroup of almost all multiplicative groups $mathbb{Z}_n^times$. We\u0000exhibit an asymptotic formula for the counting function of those integers whose\u0000multiplicative group fails to contain a copy of $G$, for all finite abelian\u0000groups $G$ (other than the trivial one-element group).","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"15 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142203822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vinogradov's theorem for primes with restricted digits 限制位数素数的维诺格拉多夫定理
arXiv - MATH - Number Theory Pub Date : 2024-09-10 DOI: arxiv-2409.06894
James Leng, Mehtaab Sawhney
{"title":"Vinogradov's theorem for primes with restricted digits","authors":"James Leng, Mehtaab Sawhney","doi":"arxiv-2409.06894","DOIUrl":"https://doi.org/arxiv-2409.06894","url":null,"abstract":"Let $g$ be sufficiently large, $bin{0,ldots,g-1}$, and $mathcal{S}_b$ be\u0000the set of integers with no digit equal to $b$ in their base $g$ expansion. We\u0000prove that every sufficiently large odd integer $N$ can be written as $p_1 +\u0000p_2 + p_3$ where $p_i$ are prime and $p_iin mathcal{S}_b$.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"14 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142203821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the representation of an integer in Ostrowski and recurrence numeration systems 论整数在奥斯特洛夫斯基和递推运算系统中的表示法
arXiv - MATH - Number Theory Pub Date : 2024-09-10 DOI: arxiv-2409.06232
Mohit Mittal, Divyum Sharma
{"title":"On the representation of an integer in Ostrowski and recurrence numeration systems","authors":"Mohit Mittal, Divyum Sharma","doi":"arxiv-2409.06232","DOIUrl":"https://doi.org/arxiv-2409.06232","url":null,"abstract":"We provide an effective upper bound for positive integers with bounded\u0000Hamming weights with respect to both a linear recurrence numeration system and\u0000an Ostrowski-$alpha$ numeration system, where $alpha$ is a quadratic\u0000irrational. We prove a similar result for the representation of an integer in\u0000two textit{different} Ostrowski numeration systems.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"25 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142203831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On new minimal excludants of overpartitions related to some $q$-series of Ramanujan 论与拉玛努扬的一些 $q$ 系列有关的新的最小超分区排除因子
arXiv - MATH - Number Theory Pub Date : 2024-09-10 DOI: arxiv-2409.06121
Aritram Dhar, Avi Mukhopadhyay, Rishabh Sarma
{"title":"On new minimal excludants of overpartitions related to some $q$-series of Ramanujan","authors":"Aritram Dhar, Avi Mukhopadhyay, Rishabh Sarma","doi":"arxiv-2409.06121","DOIUrl":"https://doi.org/arxiv-2409.06121","url":null,"abstract":"Analogous to Andrews' and Newman's discovery and work on the minimal\u0000excludant or \"mex\" of partitions, we define four new classes of minimal\u0000excludants for overpartitions and unearth relations to certain functions due to\u0000Ramanujan.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"10 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142203832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信