与黎曼zeta函数值有关的积分系列

Rahul Kumar, Paul Levrie, Jean-Christophe Pain, Victor Scharaschkin
{"title":"与黎曼zeta函数值有关的积分系列","authors":"Rahul Kumar, Paul Levrie, Jean-Christophe Pain, Victor Scharaschkin","doi":"arxiv-2409.06546","DOIUrl":null,"url":null,"abstract":"We propose a relation between values of the Riemann zeta function $\\zeta$ and\na family of integrals. This results in an integral representation for\n$\\zeta(2p)$, where $p$ is a positive integer, and an expression of\n$\\zeta(2p+1)$ involving one of the above mentioned integrals together with a\nharmonic-number sum. Simplification of the latter eventually leads to an\nintegral representation of $\\zeta(2p + 1)$.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A family of integrals related to values of the Riemann zeta function\",\"authors\":\"Rahul Kumar, Paul Levrie, Jean-Christophe Pain, Victor Scharaschkin\",\"doi\":\"arxiv-2409.06546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a relation between values of the Riemann zeta function $\\\\zeta$ and\\na family of integrals. This results in an integral representation for\\n$\\\\zeta(2p)$, where $p$ is a positive integer, and an expression of\\n$\\\\zeta(2p+1)$ involving one of the above mentioned integrals together with a\\nharmonic-number sum. Simplification of the latter eventually leads to an\\nintegral representation of $\\\\zeta(2p + 1)$.\",\"PeriodicalId\":501064,\"journal\":{\"name\":\"arXiv - MATH - Number Theory\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06546\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了黎曼zeta函数$\zeta$的值与一系列积分之间的关系。这就产生了$zeta(2p)$的积分表示,其中$p$是正整数,以及$zeta(2p+1)$的表达式,其中涉及上述积分之一与谐波数之和。对后者的简化最终会得到 $\zeta(2p+1)$的积分表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A family of integrals related to values of the Riemann zeta function
We propose a relation between values of the Riemann zeta function $\zeta$ and a family of integrals. This results in an integral representation for $\zeta(2p)$, where $p$ is a positive integer, and an expression of $\zeta(2p+1)$ involving one of the above mentioned integrals together with a harmonic-number sum. Simplification of the latter eventually leads to an integral representation of $\zeta(2p + 1)$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信