Multiplicative groups avoiding a fixed group

Matthias Hannesson, Greg Martin
{"title":"Multiplicative groups avoiding a fixed group","authors":"Matthias Hannesson, Greg Martin","doi":"arxiv-2409.06869","DOIUrl":null,"url":null,"abstract":"We know that any finite abelian group $G$ appears as a subgroup of infinitely\nmany multiplicative groups $\\mathbb{Z}_n^\\times$ (the abelian groups of size\n$\\phi(n)$ that are the multiplicative groups of units in the rings\n$\\mathbb{Z}/n\\mathbb{Z}$). It seems to be less well appeciated that $G$ appears\nas a subgroup of almost all multiplicative groups $\\mathbb{Z}_n^\\times$. We\nexhibit an asymptotic formula for the counting function of those integers whose\nmultiplicative group fails to contain a copy of $G$, for all finite abelian\ngroups $G$ (other than the trivial one-element group).","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We know that any finite abelian group $G$ appears as a subgroup of infinitely many multiplicative groups $\mathbb{Z}_n^\times$ (the abelian groups of size $\phi(n)$ that are the multiplicative groups of units in the rings $\mathbb{Z}/n\mathbb{Z}$). It seems to be less well appeciated that $G$ appears as a subgroup of almost all multiplicative groups $\mathbb{Z}_n^\times$. We exhibit an asymptotic formula for the counting function of those integers whose multiplicative group fails to contain a copy of $G$, for all finite abelian groups $G$ (other than the trivial one-element group).
避免固定群的乘法群
我们知道,任何有限无性群 $G$ 都是无限多乘法群 $\mathbb{Z}_n^\times$ (大小为$\phi(n)$ 的无性群,它们是环 $\mathbb{Z}/n\mathbb{Z}$ 中单位的乘法群)的子群。$G$作为几乎所有乘法群$\mathbb{Z}_n^\times$的子群出现,这一点似乎没有得到很好的重视。我们展示了对于所有有限无边组 $G$(微不足道的单元素组除外)来说,其乘法群不包含 $G$ 副本的那些整数的计数函数的渐近公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信