A Mean Value Theorem for general Dirichlet Series

Frederik Broucke, Titus Hilberdink
{"title":"A Mean Value Theorem for general Dirichlet Series","authors":"Frederik Broucke, Titus Hilberdink","doi":"arxiv-2409.06301","DOIUrl":null,"url":null,"abstract":"In this paper we obtain a mean value theorem for a general Dirichlet series\n$f(s)= \\sum_{j=1}^\\infty a_j n_j^{-s}$ with positive coefficients for which the\ncounting function $A(x) = \\sum_{n_{j}\\le x}a_{j}$ satisfies $A(x)=\\rho x +\nO(x^\\beta)$ for some $\\rho>0$ and $\\beta<1$. We prove that $\\frac1T\\int_0^T\n|f(\\sigma+it)|^2\\, dt \\to \\sum_{j=1}^\\infty a_j^2n_j^{-2\\sigma}$ for\n$\\sigma>\\frac{1+\\beta}{2}$ and obtain an upper bound for this moment for\n$\\beta<\\sigma\\le \\frac{1+\\beta}{2}$. We provide a number of examples indicating\nthe sharpness of our results.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we obtain a mean value theorem for a general Dirichlet series $f(s)= \sum_{j=1}^\infty a_j n_j^{-s}$ with positive coefficients for which the counting function $A(x) = \sum_{n_{j}\le x}a_{j}$ satisfies $A(x)=\rho x + O(x^\beta)$ for some $\rho>0$ and $\beta<1$. We prove that $\frac1T\int_0^T |f(\sigma+it)|^2\, dt \to \sum_{j=1}^\infty a_j^2n_j^{-2\sigma}$ for $\sigma>\frac{1+\beta}{2}$ and obtain an upper bound for this moment for $\beta<\sigma\le \frac{1+\beta}{2}$. We provide a number of examples indicating the sharpness of our results.
一般 Dirichlet 数列的均值定理
在本文中,我们得到了一般狄利克列数列$f(s)= \sum_{j=1}^\infty a_j n_j^{- 的均值定理。s}$ 具有正系数,其计数函数 $A(x) = \sum_{n_{j}\le x}a_{j}$ 满足 $A(x)=\rho x +O(x^\beta)$ 对于某个 $\rho>0$ 和 $\beta\frac{1+\beta}{2}$ ,并且得到了这个时刻的上界,即 $\beta<\sigma\le \frac{1+\beta}{2}$ 。我们提供了一些例子来说明我们的结果的尖锐性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信