限制位数素数的维诺格拉多夫定理

James Leng, Mehtaab Sawhney
{"title":"限制位数素数的维诺格拉多夫定理","authors":"James Leng, Mehtaab Sawhney","doi":"arxiv-2409.06894","DOIUrl":null,"url":null,"abstract":"Let $g$ be sufficiently large, $b\\in\\{0,\\ldots,g-1\\}$, and $\\mathcal{S}_b$ be\nthe set of integers with no digit equal to $b$ in their base $g$ expansion. We\nprove that every sufficiently large odd integer $N$ can be written as $p_1 +\np_2 + p_3$ where $p_i$ are prime and $p_i\\in \\mathcal{S}_b$.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vinogradov's theorem for primes with restricted digits\",\"authors\":\"James Leng, Mehtaab Sawhney\",\"doi\":\"arxiv-2409.06894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $g$ be sufficiently large, $b\\\\in\\\\{0,\\\\ldots,g-1\\\\}$, and $\\\\mathcal{S}_b$ be\\nthe set of integers with no digit equal to $b$ in their base $g$ expansion. We\\nprove that every sufficiently large odd integer $N$ can be written as $p_1 +\\np_2 + p_3$ where $p_i$ are prime and $p_i\\\\in \\\\mathcal{S}_b$.\",\"PeriodicalId\":501064,\"journal\":{\"name\":\"arXiv - MATH - Number Theory\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06894\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让$g$足够大,$b/in/{0,\ldots,g-1/}$,并且$\mathcal{S}_b$是在其基数$g$展开中没有数字等于$b$的整数集合。我们证明每一个足够大的奇整数 $N$ 都可以写成 $p_1 +p_2 + p_3$,其中 $p_i$ 是素数,而 $p_i\ 在 \mathcal{S}_b$ 中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vinogradov's theorem for primes with restricted digits
Let $g$ be sufficiently large, $b\in\{0,\ldots,g-1\}$, and $\mathcal{S}_b$ be the set of integers with no digit equal to $b$ in their base $g$ expansion. We prove that every sufficiently large odd integer $N$ can be written as $p_1 + p_2 + p_3$ where $p_i$ are prime and $p_i\in \mathcal{S}_b$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信