Arithmetic degree and its application to Zariski dense orbit conjecture

Yohsuke Matsuzawa, Junyi Xie
{"title":"Arithmetic degree and its application to Zariski dense orbit conjecture","authors":"Yohsuke Matsuzawa, Junyi Xie","doi":"arxiv-2409.06160","DOIUrl":null,"url":null,"abstract":"We prove that for a dominant rational self-map $f$ on a quasi-projective\nvariety defined over $\\overline{\\mathbb{Q}}$, there is a point whose $f$-orbit\nis well-defined and its arithmetic degree is arbitrary close to the first\ndynamical degree of $f$. As an application, we prove that Zariski dense orbit\nconjecture holds for a birational map defined over $\\overline{\\mathbb{Q}}$ such\nthat the first dynamical degree is strictly larger than the third dynamical\ndegree. In particular, the conjecture holds for birational maps on threefolds\nwith first dynamical degree larger than $1$.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"109 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that for a dominant rational self-map $f$ on a quasi-projective variety defined over $\overline{\mathbb{Q}}$, there is a point whose $f$-orbit is well-defined and its arithmetic degree is arbitrary close to the first dynamical degree of $f$. As an application, we prove that Zariski dense orbit conjecture holds for a birational map defined over $\overline{\mathbb{Q}}$ such that the first dynamical degree is strictly larger than the third dynamical degree. In particular, the conjecture holds for birational maps on threefolds with first dynamical degree larger than $1$.
算术级数及其在扎里斯基密集轨道猜想中的应用
我们证明,对于定义在$overline{mathbb{Q}}$上的准投影旋转上的有理自映射$f$,存在一个点,其$f$轨道定义良好,且其算术阶数任意接近于$f$的第一动态阶数。作为应用,我们证明了扎里斯基密集轨道猜想(Zariski dense orbitconjecture)对于定义在 $overline\mathbb{Q}}$ 上的双向映射是成立的,使得第一动态度严格大于第三动态度。特别是,该猜想对于第一动力度大于1$的三折上的双折射是成立的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信