格雷厄姆重排猜想超越整流障碍

Benjamin Bedert, Noah Kravitz
{"title":"格雷厄姆重排猜想超越整流障碍","authors":"Benjamin Bedert, Noah Kravitz","doi":"arxiv-2409.07403","DOIUrl":null,"url":null,"abstract":"A 1971 conjecture of Graham (later repeated by Erd\\H{o}s and Graham) asserts\nthat every set $A \\subseteq \\mathbb{F}_p \\setminus \\{0\\}$ has an ordering whose\npartial sums are all distinct. We prove this conjecture for sets of size $|A|\n\\leqslant e^{(\\log p)^{1/4}}$; our result improves the previous bound of $\\log\np/\\log \\log p$. One ingredient in our argument is a structure theorem involving\ndissociated sets, which may be of independent interest.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"110 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graham's rearrangement conjecture beyond the rectification barrier\",\"authors\":\"Benjamin Bedert, Noah Kravitz\",\"doi\":\"arxiv-2409.07403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A 1971 conjecture of Graham (later repeated by Erd\\\\H{o}s and Graham) asserts\\nthat every set $A \\\\subseteq \\\\mathbb{F}_p \\\\setminus \\\\{0\\\\}$ has an ordering whose\\npartial sums are all distinct. We prove this conjecture for sets of size $|A|\\n\\\\leqslant e^{(\\\\log p)^{1/4}}$; our result improves the previous bound of $\\\\log\\np/\\\\log \\\\log p$. One ingredient in our argument is a structure theorem involving\\ndissociated sets, which may be of independent interest.\",\"PeriodicalId\":501064,\"journal\":{\"name\":\"arXiv - MATH - Number Theory\",\"volume\":\"110 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

格雷厄姆在 1971 年提出的一个猜想(后来被埃尔德和格雷厄姆重复)断言,每个集合 $A \subseteq \mathbb{F}_p \setminus \{0\}$都有一个排序,其部分和都是不同的。我们针对大小为 $|A|leqslant e^{(\log p)^{1/4}}$ 的集合证明了这一猜想;我们的结果改进了之前的$\logp/\log \log p$ 的约束。我们论证的一个要素是一个涉及关联集的结构定理,这可能是我们感兴趣的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graham's rearrangement conjecture beyond the rectification barrier
A 1971 conjecture of Graham (later repeated by Erd\H{o}s and Graham) asserts that every set $A \subseteq \mathbb{F}_p \setminus \{0\}$ has an ordering whose partial sums are all distinct. We prove this conjecture for sets of size $|A| \leqslant e^{(\log p)^{1/4}}$; our result improves the previous bound of $\log p/\log \log p$. One ingredient in our argument is a structure theorem involving dissociated sets, which may be of independent interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信