通过布鲁哈特分解的 $(text{GL}_2, \text{GL}_2)$θ 升维的明确公式

Peter Xu
{"title":"通过布鲁哈特分解的 $(text{GL}_2, \\text{GL}_2)$θ 升维的明确公式","authors":"Peter Xu","doi":"arxiv-2409.06940","DOIUrl":null,"url":null,"abstract":"Using combinations of weight-1 and weight-2 of Kronecker-Eisenstein series to\nconstruct currents in the distributional de Rham complex of a squared elliptic\ncurve, we find a simple explicit formula for the type II $(\\text{GL}_2,\n\\text{GL}_2)$ theta lift without smoothing, analogous to the classical formula\nof Siegel for periods of Eisenstein series. For $K$ a CM field, the same\ntechnique applies without change to obtain an analogous formula for the\n$(\\text{GL}_2(K),K^\\times)$ theta correspondence.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explicit formula for the $(\\\\text{GL}_2, \\\\text{GL}_2)$ theta lift via Bruhat decomposition\",\"authors\":\"Peter Xu\",\"doi\":\"arxiv-2409.06940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using combinations of weight-1 and weight-2 of Kronecker-Eisenstein series to\\nconstruct currents in the distributional de Rham complex of a squared elliptic\\ncurve, we find a simple explicit formula for the type II $(\\\\text{GL}_2,\\n\\\\text{GL}_2)$ theta lift without smoothing, analogous to the classical formula\\nof Siegel for periods of Eisenstein series. For $K$ a CM field, the same\\ntechnique applies without change to obtain an analogous formula for the\\n$(\\\\text{GL}_2(K),K^\\\\times)$ theta correspondence.\",\"PeriodicalId\":501064,\"journal\":{\"name\":\"arXiv - MATH - Number Theory\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06940\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用克罗内克-爱森斯坦数列的权重-1 和权重-2 组合来构造平方椭圆曲线的分布德拉姆复数中的电流,我们找到了无需平滑的第二类$(\text{GL}_2,\text{GL}_2)$ θ提升的简单明确公式,类似于西格尔关于爱森斯坦数列周期的经典公式。对于 $K$ 一个 CM 场,同样的技术无需改变即可得到类似的 $(\text{GL}_2(K),K^\times)$ theta 对应关系式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Explicit formula for the $(\text{GL}_2, \text{GL}_2)$ theta lift via Bruhat decomposition
Using combinations of weight-1 and weight-2 of Kronecker-Eisenstein series to construct currents in the distributional de Rham complex of a squared elliptic curve, we find a simple explicit formula for the type II $(\text{GL}_2, \text{GL}_2)$ theta lift without smoothing, analogous to the classical formula of Siegel for periods of Eisenstein series. For $K$ a CM field, the same technique applies without change to obtain an analogous formula for the $(\text{GL}_2(K),K^\times)$ theta correspondence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信