加法基地:领域变化

Boris Bukh, Peter van Hintum, Peter Keevash
{"title":"加法基地:领域变化","authors":"Boris Bukh, Peter van Hintum, Peter Keevash","doi":"arxiv-2409.07442","DOIUrl":null,"url":null,"abstract":"We consider two questions of Ruzsa on how the minimum size of an additive\nbasis $B$ of a given set $A$ depends on the domain of $B$. To state these\nquestions, for an abelian group $G$ and $A \\subseteq D \\subseteq G$ we write\n$\\ell_D(A) \\colon =\\min \\{ |B|: B \\subseteq D, \\ A \\subseteq B+B \\}$. Ruzsa\nasked how much larger can $\\ell_{\\mathbb{Z}}(A)$ be than $\\ell_{\\mathbb{Q}}(A)$\nfor $A\\subset\\mathbb{Z}$, and how much larger can $\\ell_{\\mathbb{N}}(A)$ be\nthan $\\ell_{\\mathbb{Z}}(A)$ for $A\\subset\\mathbb{N}$. For the first question we\nshow that if $\\ell_{\\mathbb{Q}}(A) = n$ then $\\ell_{\\mathbb{Z}}(A) \\le 2n$, and\nthat this is tight up to an additive error of at most $O(\\sqrt{n})$. For the\nsecond question, we show that if $\\ell_{\\mathbb{Z}}(A) = n$ then\n$\\ell_{\\mathbb{N}}(A) \\le O(n\\log n)$, and this is tight up to the constant\nfactor. We also consider these questions for higher order bases. Our proofs use\nsome ideas that are unexpected in this context, including linear algebra and\nDiophantine approximation.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Additive Bases: Change of Domain\",\"authors\":\"Boris Bukh, Peter van Hintum, Peter Keevash\",\"doi\":\"arxiv-2409.07442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider two questions of Ruzsa on how the minimum size of an additive\\nbasis $B$ of a given set $A$ depends on the domain of $B$. To state these\\nquestions, for an abelian group $G$ and $A \\\\subseteq D \\\\subseteq G$ we write\\n$\\\\ell_D(A) \\\\colon =\\\\min \\\\{ |B|: B \\\\subseteq D, \\\\ A \\\\subseteq B+B \\\\}$. Ruzsa\\nasked how much larger can $\\\\ell_{\\\\mathbb{Z}}(A)$ be than $\\\\ell_{\\\\mathbb{Q}}(A)$\\nfor $A\\\\subset\\\\mathbb{Z}$, and how much larger can $\\\\ell_{\\\\mathbb{N}}(A)$ be\\nthan $\\\\ell_{\\\\mathbb{Z}}(A)$ for $A\\\\subset\\\\mathbb{N}$. For the first question we\\nshow that if $\\\\ell_{\\\\mathbb{Q}}(A) = n$ then $\\\\ell_{\\\\mathbb{Z}}(A) \\\\le 2n$, and\\nthat this is tight up to an additive error of at most $O(\\\\sqrt{n})$. For the\\nsecond question, we show that if $\\\\ell_{\\\\mathbb{Z}}(A) = n$ then\\n$\\\\ell_{\\\\mathbb{N}}(A) \\\\le O(n\\\\log n)$, and this is tight up to the constant\\nfactor. We also consider these questions for higher order bases. Our proofs use\\nsome ideas that are unexpected in this context, including linear algebra and\\nDiophantine approximation.\",\"PeriodicalId\":501064,\"journal\":{\"name\":\"arXiv - MATH - Number Theory\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07442\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑鲁兹萨提出的两个问题,即给定集合 $A$ 的可加基础 $B$ 的最小大小如何取决于 $B$ 的域。为了说明这些问题,对于一个无常群 $G$ 和 $A (subseteq D (subseteq G$),我们写$ell_D(A) (colon =\min \{ |B|:B \subseteq D, A \subseteq B+B \}$。鲁兹问:对于 $A\subset\mathbb{Z}$ 而言,$ell_{mathbb{Z}}(A)$ 比 $\ell_{mathbb{Q}}(A)$ 大多少;对于 $A\subset\mathbb{N}$ 而言,$ell_{mathbb{N}}(A)$ 比 $\ell_{mathbb{Z}}(A)$ 大多少。对于第一个问题,我们证明了如果 $\ell_{\mathbb{Q}}(A) = n$,那么 $\ell_{\mathbb{Z}}(A) \le 2n$,并且这一点是紧密的,其加法误差最多为 $O(\sqrt{n})$。对于第二个问题,我们证明如果$\ell_{\mathbb{Z}}(A) = n$,那么$\ell_{\mathbb{N}}(A) \le O(n\log n)$,并且这在常数因子上是紧密的。我们还考虑了高阶基的这些问题。我们的证明使用了一些在此背景下意想不到的思想,包括线性代数和二阶近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Additive Bases: Change of Domain
We consider two questions of Ruzsa on how the minimum size of an additive basis $B$ of a given set $A$ depends on the domain of $B$. To state these questions, for an abelian group $G$ and $A \subseteq D \subseteq G$ we write $\ell_D(A) \colon =\min \{ |B|: B \subseteq D, \ A \subseteq B+B \}$. Ruzsa asked how much larger can $\ell_{\mathbb{Z}}(A)$ be than $\ell_{\mathbb{Q}}(A)$ for $A\subset\mathbb{Z}$, and how much larger can $\ell_{\mathbb{N}}(A)$ be than $\ell_{\mathbb{Z}}(A)$ for $A\subset\mathbb{N}$. For the first question we show that if $\ell_{\mathbb{Q}}(A) = n$ then $\ell_{\mathbb{Z}}(A) \le 2n$, and that this is tight up to an additive error of at most $O(\sqrt{n})$. For the second question, we show that if $\ell_{\mathbb{Z}}(A) = n$ then $\ell_{\mathbb{N}}(A) \le O(n\log n)$, and this is tight up to the constant factor. We also consider these questions for higher order bases. Our proofs use some ideas that are unexpected in this context, including linear algebra and Diophantine approximation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信