有限域上曲线的 Diophantine 稳定性

Francesc Bars, Joan Carles Lario
{"title":"有限域上曲线的 Diophantine 稳定性","authors":"Francesc Bars, Joan Carles Lario","doi":"arxiv-2409.07086","DOIUrl":null,"url":null,"abstract":"We carry out a survey on curves defined over finite fields that are\nDiophantine stable; that is, with the property that the set of points of the\ncurve is not altered under a proper field extension. First, we derive some\ngeneral results of such curves and then we analyze several families of curves\nthat happen to be Diophantine stable.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diophantine stability for curves over finite fields\",\"authors\":\"Francesc Bars, Joan Carles Lario\",\"doi\":\"arxiv-2409.07086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We carry out a survey on curves defined over finite fields that are\\nDiophantine stable; that is, with the property that the set of points of the\\ncurve is not altered under a proper field extension. First, we derive some\\ngeneral results of such curves and then we analyze several families of curves\\nthat happen to be Diophantine stable.\",\"PeriodicalId\":501064,\"journal\":{\"name\":\"arXiv - MATH - Number Theory\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们对定义在有限域上的狄奥凡汀稳定曲线进行了研究,即曲线的点集在适当的域扩展下不会改变。首先,我们推导出这类曲线的一些一般结果,然后分析了恰好是 Diophantine 稳定曲线的几个曲线族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diophantine stability for curves over finite fields
We carry out a survey on curves defined over finite fields that are Diophantine stable; that is, with the property that the set of points of the curve is not altered under a proper field extension. First, we derive some general results of such curves and then we analyze several families of curves that happen to be Diophantine stable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信