n 维点灯组中的子单体成员和 S 单位方程

Ruiwen Dong
{"title":"n 维点灯组中的子单体成员和 S 单位方程","authors":"Ruiwen Dong","doi":"arxiv-2409.07077","DOIUrl":null,"url":null,"abstract":"We show that Submonoid Membership is decidable in n-dimensional lamplighter\ngroups $(\\mathbb{Z}/p\\mathbb{Z}) \\wr \\mathbb{Z}^n$ for any prime $p$ and\ninteger $n$. More generally, we show decidability of Submonoid Membership in\nsemidirect products of the form $\\mathcal{Y} \\rtimes \\mathbb{Z}^n$, where\n$\\mathcal{Y}$ is any finitely presented module over the Laurent polynomial ring\n$\\mathbb{F}_p[X_1^{\\pm}, \\ldots, X_n^{\\pm}]$. Combined with a result of Shafrir\n(2024), this gives the first example of a group $G$ and a finite index subgroup\n$\\widetilde{G} \\leq G$, such that Submonoid Membership is decidable in\n$\\widetilde{G}$ but undecidable in $G$. To obtain our decidability result, we reduce Submonoid Membership in\n$\\mathcal{Y} \\rtimes \\mathbb{Z}^n$ to solving S-unit equations over\n$\\mathbb{F}_p[X_1^{\\pm}, \\ldots, X_n^{\\pm}]$-modules. We show that the solution\nset of such equations is effectively $p$-automatic, extending a result of\nAdamczewski and Bell (2012). As an intermediate result, we also obtain that the\nsolution set of the Knapsack Problem in $\\mathcal{Y} \\rtimes \\mathbb{Z}^n$ is\neffectively $p$-automatic.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Submonoid Membership in n-dimensional lamplighter groups and S-unit equations\",\"authors\":\"Ruiwen Dong\",\"doi\":\"arxiv-2409.07077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that Submonoid Membership is decidable in n-dimensional lamplighter\\ngroups $(\\\\mathbb{Z}/p\\\\mathbb{Z}) \\\\wr \\\\mathbb{Z}^n$ for any prime $p$ and\\ninteger $n$. More generally, we show decidability of Submonoid Membership in\\nsemidirect products of the form $\\\\mathcal{Y} \\\\rtimes \\\\mathbb{Z}^n$, where\\n$\\\\mathcal{Y}$ is any finitely presented module over the Laurent polynomial ring\\n$\\\\mathbb{F}_p[X_1^{\\\\pm}, \\\\ldots, X_n^{\\\\pm}]$. Combined with a result of Shafrir\\n(2024), this gives the first example of a group $G$ and a finite index subgroup\\n$\\\\widetilde{G} \\\\leq G$, such that Submonoid Membership is decidable in\\n$\\\\widetilde{G}$ but undecidable in $G$. To obtain our decidability result, we reduce Submonoid Membership in\\n$\\\\mathcal{Y} \\\\rtimes \\\\mathbb{Z}^n$ to solving S-unit equations over\\n$\\\\mathbb{F}_p[X_1^{\\\\pm}, \\\\ldots, X_n^{\\\\pm}]$-modules. We show that the solution\\nset of such equations is effectively $p$-automatic, extending a result of\\nAdamczewski and Bell (2012). As an intermediate result, we also obtain that the\\nsolution set of the Knapsack Problem in $\\\\mathcal{Y} \\\\rtimes \\\\mathbb{Z}^n$ is\\neffectively $p$-automatic.\",\"PeriodicalId\":501064,\"journal\":{\"name\":\"arXiv - MATH - Number Theory\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了在任意素数 $p$ 和整数 $n$ 的 n 维点灯组 $(\mathbb{Z}/p\mathbb{Z}) \wr \mathbb{Z}^n$ 中,子模成员资格是可解的。更广义地说,我们证明了子模成员资格在 $\mathcal{Y} 形式的间接积中的可解性。\其中$mathcal{Y}$ 是在劳伦多项式环$mathbb{F}_p[X_1^{/pm}, \ldots, X_n^{/pm}]$上的任意有限呈现模块。结合沙弗里尔(2024)的一个结果,这给出了第一个群 $G$ 和有限索引子群$widetilde{G}的例子。\leq G$,使得子模成员资格在$widetilde{G}$中是可决的,而在$G$中是不可决的。为了得到我们的可判性结果,我们将 Submonoid Membership 在$\mathcal{Y}中简化为\rtimes\mathbb{Z}^n$中的子单体成员资格简化为求解$mathbb{F}_p[X_1^{\pm}, \ldots, X_n^{\pm}]$模块上的S单元方程。我们证明了这些方程的解集实际上是$p$自动的,这扩展了Adamczewski 和 Bell (2012) 的一个结果。作为中间结果,我们还得到了$\mathcal{Y}中的Knapsack问题的解集。\rtimes\mathbb{Z}^n$中的Knapsack问题的解集实际上是$p$自动的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Submonoid Membership in n-dimensional lamplighter groups and S-unit equations
We show that Submonoid Membership is decidable in n-dimensional lamplighter groups $(\mathbb{Z}/p\mathbb{Z}) \wr \mathbb{Z}^n$ for any prime $p$ and integer $n$. More generally, we show decidability of Submonoid Membership in semidirect products of the form $\mathcal{Y} \rtimes \mathbb{Z}^n$, where $\mathcal{Y}$ is any finitely presented module over the Laurent polynomial ring $\mathbb{F}_p[X_1^{\pm}, \ldots, X_n^{\pm}]$. Combined with a result of Shafrir (2024), this gives the first example of a group $G$ and a finite index subgroup $\widetilde{G} \leq G$, such that Submonoid Membership is decidable in $\widetilde{G}$ but undecidable in $G$. To obtain our decidability result, we reduce Submonoid Membership in $\mathcal{Y} \rtimes \mathbb{Z}^n$ to solving S-unit equations over $\mathbb{F}_p[X_1^{\pm}, \ldots, X_n^{\pm}]$-modules. We show that the solution set of such equations is effectively $p$-automatic, extending a result of Adamczewski and Bell (2012). As an intermediate result, we also obtain that the solution set of the Knapsack Problem in $\mathcal{Y} \rtimes \mathbb{Z}^n$ is effectively $p$-automatic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信